394 research outputs found

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are significant environmental contaminants as they are present naturally as well as anthropogenically in soil, air and water. In spite of their low solubility, PAHs are spread to the environment, and they are present in surface water, industrial effluent or groundwater. Amongst all remediation technologies for treating groundwater contaminated with PAHs, the use of a permeable reactive biobarrier (PRBB) appears to be the most cost-effective, energy efficient, and environmentally sound approach. In this technology, the microorganisms are used as reactive medium to degrade or stabilize the contaminants. The main limits of this approach are that the microorganisms or consortium used for forming the PRBB should show adequate characteristics. They must be retained in the barrier-forming biofilm, and they should also have degradative ability for the target pollutants. The aim of the present work is to evaluate the viability of Arthrobacter viscosus as bioreactive medium for forming PRBB. Initially, the ability of A. viscosus to remove PAHs, benzo[a]anthracene 100 ÎźM and phenanthrene 100 ÎźM was evaluated operating in a batch bench-scale bioreactor. In both cases, total benzo[a]anthracene and phenanthrene removals were obtained after 7 and 3 days, respectively. Furthermore, the viability of the microorganisms was evaluated in the presence of chromium in a continuous mode. As a final point, the adhesion of A. viscosus to sepiolite forming a bioreactive material to build PRBB was demonstrated. In view of the attained results, it can be concluded that A. viscosus could be a suitable microorganism to form a bioreactive medium for PAHs remediation.This work has been supported by the Spanish Ministry of Economy and Competitiveness and FEDER Funds (Project CTM 2011-25389). Marta Pazos received financial support under the Ramon y Cajal programme and Marta Cobas under the final project master grant "Campus do Mar Knowledge in depth"

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Mycobacterium phlei cell wall complex directly induces apoptosis in human bladder cancer cells

    Get PDF
    Intact mycobacteria and mycobacterial cell wall extracts have been shown to inhibit the growth of human and murine bladder cancer. Their mechanism of action is, however, poorly understood. Mycobacterium phlei mycobacterial cell complex (MCC) is a cell wall preparation that has mycobacterial DNA in the form of short oligonucleotides complexed on the cell wall surface. In this study, we have investigated the possibility that MCC has anti-cancer activity that is mediated by two different mechanisms – a direct effect on cancer cell proliferation and viability and an indirect effect mediated by the production of interleukin 12 (IL-12), a cytokine known to possess anti-cancer activity. We have found that, although MCC is a potent inducer of IL-12 and IL-6 synthesis in monocytes and macrophages either in vitro or in vivo, it is unable to induce the synthesis of either IL-12, IL-6 or granulocyte–macrophage colony-stimulating factor (GM-CSF) by the human transitional bladder cancer cell lines HT-1197 and HT-1376. MCC is not directly cytotoxic towards these cancer cells, but induces apoptosis as determined by nuclear DNA fragmentation and by the release of nuclear mitotic apparatus protein. Mycobacterium phlei DNA associated with MCC is responsible for the induction of apoptosis. Our results indicate that MCC directly effects bladder cancer cells by inhibiting cellular proliferation through the induction of apoptosis, and has the potential for an indirect anti-cancer activity by stimulating cancer-infiltrating monocytes/macrophages to synthesize IL-12. © 1999 Cancer Research Campaig

    Genome-Wide Identification and Immune Response Analysis of Serine Protease Inhibitor Genes in the Silkworm, Bombyx mori

    Get PDF
    In most insect species, a variety of serine protease inhibitors (SPIs) have been found in multiple tissues, including integument, gonad, salivary gland, and hemolymph, and are required for preventing unwanted proteolysis. These SPIs belong to different families and have distinct inhibitory mechanisms. Herein, we predicted and characterized potential SPI genes based on the genome sequences of silkworm, Bombyx mori. As a result, a total of eighty SPI genes were identified in B. mori. These SPI genes contain 10 kinds of SPI domains, including serpin, Kunitz_BPTI, Kazal, TIL, amfpi, Bowman-Birk, Antistasin, WAP, Pacifastin, and alpha-macroglobulin. Sixty-three SPIs contain single SPI domain while the others have at least two inhibitor units. Some SPIs also contain non-inhibitor domains for protein-protein interactions, including EGF, ADAM_spacer, spondin_N, reeler, TSP_1 and other modules. Microarray analysis showed that fourteen SPI genes from lineage-specific TIL family and Group F of serpin family had enriched expression in the silk gland. The roles of SPIs in resisting pathogens were investigated in silkworms when they were infected by four pathogens. Microarray and qRT-PCR experiments revealed obvious up-regulation of 8, 4, 3 and 3 SPI genes after infection with Escherichia coli, Bacillus bombysepticus, Beauveria bassiana or B. mori nuclear polyhedrosis virus (BmNPV), respectively. On the contrary, 4, 11, 7 and 9 SPI genes were down-regulated after infection with E. coli, B. bombysepticus, B. bassiana or BmNPV, respectively. These results suggested that these SPI genes may be involved in resistance to pathogenic microorganisms. These findings may provide valuable information for further clarifying the roles of SPIs in the development, immune defence, and efficient synthesis of silk gland protein

    Unusually complex phase of dense nitrogen at extreme conditions

    Get PDF
    Nitrogen exhibits an exceptional polymorphism under extreme conditions, making it unique amongst the elemental diatomics and a valuable testing system for experiment-theory comparison. Despite attracting considerable attention, the structures of many high-pressure nitrogen phases still require unambiguous determination. Here, we report the structure of the elusive high-pressure high-temperature polymorph ι–N2ι–N_2 at 56 GPa and ambient temperature, determined by single crystal X-ray diffraction, and investigate its properties using ab initio simulations. We find that ι–N2ι–N_2 is characterised by an extraordinarily large unit cell containing 48 N2N_2 molecules. Geometry optimisation favours the experimentally determined structure and density functional theory calculations find ι–N2ι–N_2 to have the lowest enthalpy of the molecular nitrogen polymorphs that exist between 30 and 60 GPa. The results demonstrate that very complex structures, similar to those previously only observed in metallic elements, can become energetically favourable in molecular systems at extreme pressures and temperatures

    First report on dung beetles in intra-Amazonian savannahs in Roraima, Brazil

    Get PDF
    This is the first study to address the dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in intra-Amazonian savannahs in the state of Roraima, Brazil. Our aim was to survey the dung beetle fauna associated with these savannahs (regionally called 'lavrado'), since little is known about the dung beetles from this environment. We conducted three field samples using pitfall traps baited with human dung in savannah areas near the city of Boa Vista during the rainy seasons of 1996, 1997, and 2008. We collected 383 individuals from ten species, wherein six have no previous record in intra-Amazonian savannahs. The most abundant species were Ontherus appendiculatus (Mannerheim, 1829), Canthidium aff. humerale (Germar, 1813), Dichotomius nisus (Olivier, 1789), and Pseudocanthon aff. xanthurus (Blanchard, 1846). We believe that knowing the dung beetles diversity associated with the intra-Amazonian savannahs is ideal for understanding the occurrence and distribution of these organisms in a highly threatened environment, it thus being the first step towards conservation strategy development

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    • …
    corecore