161 research outputs found

    Cosmic-ray and X-ray Heating of Interstellar Clouds and Protoplanetary Disks

    Full text link
    Cosmic-ray and X-ray heating are derived from the electron energy loss calculations of Dalgarno, Yan and Liu for hydrogen-helium gas mixtures. These authors treated the heating from elastic scattering and collisional de-excitation of rotationally excited hydrogen molecules. Here we consider the heating that can arise from all ionization and excitation processes, with particular emphasis on the reactions of cosmic-ray and X-ray generated ions with the heavy neutral species, which we refer to as chemical heating. In molecular regions, chemical heating dominates and can account for 50 per cent of the energy expended in the creation of an ion pair. The heating per ion pair ranges in the limit of negligible electron fraction from about 4.3 eV for diffuse atomic gas, to about 13 eV for the moderately dense regions of molecular clouds and to about 18 eV for the very dense regions of protoplanetary disks. An important general conclusion of this study is that cosmic-ray and X-ray heating depends on the physical properties of the medium, i.e., on the molecular and electron fractions, the total density of hydrogen nuclei, and to a lesser extent on the temperature. It is also noted that chemical heating, the dominant process for cosmic-ray and X-ray heating, plays a role in UV irradiated molecular gas.Comment: 39 pages, accepted for publication in the Astrophysical Journa

    Observing a column-dependent zeta in dense interstellar sources: the case of the Horsehead Nebula

    Full text link
    Context: Observations of small carbon-bearing molecules such as CCH, C4H, c-C3H2, and HCO in the Horsehead Nebula have shown these species to have higher abundances towards the edge of the source than towards the center. Aims: Given the determination of a wide range of values for zeta (s-1), the total ionization rate of hydrogen atoms, and the proposal of a column-dependent zeta(N_H), where N_H is the total column of hydrogen nuclei, we desire to determine if the effects of zeta(N_H) in a single object with spatial variation can be observable. We chose the Horsehead Nebula because of its geometry and high density. Method: We model the Horsehead Nebula as a near edge-on photon dominated region (PDR), using several choices for zeta, both constant and as a function of column. The column-dependent zeta functions are determined by a Monte Carlo model of cosmic ray penetration, using a steep power-law spectrum and accounting for ionization and magnetic field effects. We consider a case with low-metal elemental abundances as well as a sulfur-rich case. Results: We show that use of a column-dependent zeta(N_H) of 5(-15) s-1 at the surface and 7.5(-16) s-1 at Av = 10 on balance improves agreement between measured and theoretical molecular abundances, compared with constant values of zeta.Comment: 12 pages, 6 figures, 5 tables, accepted in A&

    SOFIA/EXES Observations of Water Absorption in the Protostar AFGL 2591 at High Spectral Resolution

    Get PDF
    We present high spectral resolution (~3 km/s) observations of the nu_2 ro-vibrational band of H2O in the 6.086--6.135 micron range toward the massive protostar AFGL 2591 using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory for Infrared Astronomy (SOFIA). Ten absorption features are detected in total, with seven caused by transitions in the nu_2 band of H2O, two by transitions in the first vibrationally excited nu_2 band of H2O, and one by a transition in the nu_2 band of H2{18}O. Among the detected transitions is the nu_2 1(1,1)--0(0,0) line which probes the lowest lying rotational level of para-H2O. The stronger transitions appear to be optically thick, but reach maximum absorption at a depth of about 25%, suggesting that the background source is only partially covered by the absorbing gas, or that the absorption arises within the 6 micron emitting photosphere. Assuming a covering fraction of 25%, the H2O column density and rotational temperature that best fit the observed absorption lines are N(H2O)=(1.3+-0.3)*10^{19} cm^{-2} and T=640+-80 K.Comment: 6 pages, 3 figures, 1 table, accepted for publication in ApJ

    Herschel observations of interstellar chloronium. II - Detections toward G29.96-0.02, W49N, W51, and W3(OH), and determinations of the ortho-to-para and 35^{35}Cl/37^{37}Cl isotopic ratios

    Get PDF
    We report additional detections of the chloronium molecular ion, H2_2Cl+^+, toward four bright submillimeter continuum sources: G29.96, W49N, W51, and W3(OH). With the use of the HIFI instrument on the Herschel Space Observatory, we observed the 2121012_{12}-1_{01} transition of ortho-H235_2^{35}Cl+^+ at 781.627 GHz in absorption toward all four sources. Much of the detected absorption arises in diffuse foreground clouds that are unassociated with the background continuum sources and in which our best estimates of the N(H2Cl+)/N(H)N({\rm H_2Cl^+})/N({\rm H}) ratio lie in the range (0.94.8)×109(0.9 - 4.8) \times 10^{-9}. These chloronium abundances relative to atomic hydrogen can exceed the predictions of current astrochemical models by up to a factor of 5. Toward W49N, we have also detected the 2121012_{12}-1_{01} transition of ortho-H237_2^{37}Cl+^+ at 780.053 GHz and the 1110001_{11}-0_{00} transition of para-H235_2^{35}Cl+^+ at 485.418 GHz. These observations imply H235Cl+/H237Cl+\rm H_2^{35}Cl^+/H_2^{37}Cl^+ column density ratios that are consistent with the solar system 35^{35}Cl/37^{37}Cl isotopic ratio of 3.1, and chloronium ortho-to-para ratios consistent with 3, the ratio of spin statistical weights.Comment: 31 pages, including 7 figures. Accepted for publication in the Ap

    Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    Get PDF
    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (zeta_H) and molecular hydrogen fraction, f(H2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f(H2) in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042+-0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer zeta_H throughout our sample, and find a log-normal distribution with mean log(zeta_H)=-15.75, (zeta_H=1.78x10^-16 s^-1), and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H3+ observations. Ionization rates in the Galactic center tend to be 10--100 times larger than found in the Galactic disk, also in accord with prior studies.Comment: 76 pages, 25 figures, 6 tables; accepted for publication in Ap

    Sensitivity Analysis of Grain Surface Chemistry to Binding Energies of Ice Species

    Get PDF
    Advanced telescopes, such as ALMA and the James Webb Space Telescope, are likely to show that the chemical universe may be even more complex than currently observed, requiring astrochemical modelers to improve their models to account for the impact of new data. However, essential input information for gas‑grain models, such as binding energies of molecules to the surface, have been derived experimentally only for a handful of species, leaving hundreds of species with highly uncertain estimates. We present in this paper a systematic study of the effect of uncertainties in the binding energies on an astrochemical two-phase model of a dark molecular cloud, using the rate equations approach. A list of recommended binding energy values based on a literature search of published data is presented. Thousands of simulations of dark cloud models were run, and in each simulation a value for the binding energy of hundreds of species was randomly chosen from a normal distribution. Our results show that the binding energy of H2 is critical for the surface chemistry. For high binding energies, H2 freezes out on the grain forming an H2 ice. This is not physically realistic, and we suggest a change in the rate equations. The abundance ranges found are in reasonable agreement with astronomical ice observations. Pearson correlation coefficients revealed that the binding energy of HCO, HNO, CH2, and C correlate most strongly with the abundance of dominant ice species. Finally, the formation route of complex organic molecules was found to be sensitive to the branching ratios of H2CO hydrogenation

    Sensitivity analyses of dense cloud chemical models

    Full text link
    Because of new telescopes that will dramatically improve our knowledge of the interstellar medium, chemical models will have to be used to simulate the chemistry of many regions with diverse properties. To make these models more robust, it is important to understand their sensitivity to a variety of parameters. In this article, we report a study of the sensitivity of a chemical model of a cold dense core, with homogeneous and time-independent physical conditions, to variations in the following parameters: initial chemical inventory, gas temperature and density, cosmic-ray ionization rate, chemical reaction rate coefficients, and elemental abundances. From the results of the parameter variations, we can quantify the sensitivity of the model to each parameter as a function of time. Our results can be used in principle with observations to constrain some parameters for different cold clouds. We also attempted to use the Monte Carlo approach with all parameters varied collectively. Within the parameter ranges studied, the most critical parameters turn out to be the reaction rate coefficients at times up to 4e5 yr and elemental abundances at later times. At typical times of best agreement with observation, models are sensitive to both of these parameters. The models are less sensitive to other parameters such as the gas density and temperature. The improvement of models will require that the uncertainties in rate coefficients of important reactions be reduced. As the chemistry becomes better understood and more robust, it should be possible to use model sensitivities concerning other parameters, such as the elemental abundances and the cosmic ray ionization rate, to yield detailed information on cloud properties and history. Nevertheless, at the current stage, we cannot determine the best values of all the parameters simultaneously based on purely observational constraints.Comment: Accepted for publication in Astronomy & Astrophysic

    Salt-bearing disk candidates around high-mass young stellar objects

    Full text link
    Molecular lines tracing the orbital motion of gas in a well-defined disk are valuable tools for inferring both the properties of the disk and the star it surrounds. Lines that arise only from a disk, and not also from the surrounding molecular cloud core that birthed the star or from the outflow it drives, are rare. Several such emission lines have recently been discovered in one example case, those from NaCl and KCl salt molecules. We studied a sample of 23 candidate high-mass young stellar objects (HMYSOs) in 17 high-mass star-forming regions to determine how frequently emission from these species is detected. We present five new detections of water, NaCl, KCl, PN, and SiS from the innermost regions around the objects, bringing the total number of known briny disk candidates to nine. Their kinematic structure is generally disk-like, though we are unable to determine whether they arise from a disk or outflow in the sources with new detections. We demonstrate that these species are spatially coincident in a few resolved cases and show that they are generally detected together, suggesting a common origin or excitation mechanism. We also show that several disks around HMYSOs clearly do not exhibit emission in these species. Salty disks are therefore neither particularly rare in high-mass disks, nor are they ubiquitous.Comment: accepted to Ap

    Rotationally Warm Molecular Hydrogen in the Orion Bar

    Get PDF
    The Orion Bar is one of the nearest and best-studied photodissociation or photon-dominated regions (PDRs). Observations reveal the presence of H2 lines from vibrationally or rotationally excited upper levels that suggest warm gas temperatures (400 to 700 K). However, standard models of PDRs are unable to reproduce such warm rotational temperatures. In this paper we attempt to explain these observations with new comprehensive models which extend from the H+ region through the Bar and include the magnetic field in the equation of state. We adopt the model parameters from our previous paper which successfully reproduced a wide variety of spectral observations across the Bar. In this model the local cosmic-ray density is enhanced above the galactic background, as is the magnetic field, and which increases the cosmic-ray heating elevating the temperature in the molecular region. The pressure is further enhanced above the gas pressure in the H+ region by the momentum transferred from the absorbed starlight. Here we investigate whether the observed H2 lines can be reproduced with standard assumptions concerning the grain photoelectric emission. We also explore the effects due to the inclusion of recently computed H2 + H2, H2 + H and H2 + He collisional rate coefficients.Comment: Accepted for publication in ApJ (34 pages, including 16 figures

    Cosmic-ray ionization of molecular clouds

    Full text link
    Low-energy cosmic rays are a fundamental source of ionization for molecular clouds, influencing their chemical, thermal and dynamical evolution. The purpose of this work is to explore the possibility that a low-energy component of cosmic-rays, not directly measurable from the Earth, can account for the discrepancy between the ionization rate measured in diffuse and dense interstellar clouds. We collect the most recent experimental and theoretical data on the cross sections for the production of H2+ and He+ by electron and proton impact, and we discuss the available constraints on the cosmic-ray fluxes in the local interstellar medium. Starting from different extrapolations at low energies of the demodulated cosmic-ray proton and electron spectra, we compute the propagated spectra in molecular clouds in the continuous slowing-down approximation taking into account all the relevant energy loss processes. The theoretical value of the cosmic-ray ionization rate as a function of the column density of traversed matter is in agreement with the observational data only if either the flux of cosmic-ray electrons or of protons increases at low energies. The most successful models are characterized by a significant (or even dominant) contribution of the electron component to the ionization rate, in agreement with previous suggestions. However, the large spread of cosmic-ray ionization rates inferred from chemical models of molecular cloud cores remains to be explained. Available data combined with simple propagation models support the existence of a low-energy component (below about 100 MeV) of cosmic-ray electrons or protons responsible for the ionization of molecular cloud cores and dense protostellar envelopes.Comment: 14 pages, 15 figure
    corecore