1,581 research outputs found

    Damping of supernova neutrino transitions in stochastic shock-wave density profiles

    Full text link
    Supernova neutrino flavor transitions during the shock wave propagation are known to encode relevant information not only about the matter density profile but also about unknown neutrino properties, such as the mass hierarchy (normal or inverted) and the mixing angle theta_13. While previous studies have focussed on "deterministic" density profiles, we investigate the effect of possible stochastic matter density fluctuations in the wake of supernova shock waves. In particular, we study the impact of small-scale fluctuations on the electron (anti)neutrino survival probability, and on the observable spectra of inverse-beta-decay events in future water-Cherenkov detectors. We find that such fluctuations, even with relatively small amplitudes, can have significant damping effects on the flavor transition pattern, and can partly erase the shock-wave imprint on the observable time spectra, especially for sin^2(theta_13) > O(10^-3).Comment: v2 (23 pages, including 6 eps figures). Typos removed, references updated, matches the published versio

    Short Distance vs. Long Distance Physics: The Classical Limit of the Minimal Length Uncertainty Relation

    Get PDF
    We continue our investigation of the phenomenological implications of the "deformed" commutation relations [x_i,p_j]=i hbar[(1 + beta p^2) delta_{ij} + beta' p_i p_j]. These commutation relations are motivated by the fact that they lead to the minimal length uncertainty relation which appears in perturbative string theory. In this paper, we consider the effects of the deformation on the classical orbits of particles in a central force potential. Comparison with observation places severe constraints on the value of the minimum length.Comment: 20 pages REVTEX4, 4 color eps figures, typos correcte

    CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptor domain. Translational and clinical research

    Get PDF
    CK2 represents an oncology target scientifically validated. However, clinical research with inhibitors of the CK2-mediated phosphorylation event is still insufficient to recognize it as a clinically validated target. CIGB-300, an investigational peptide-based drug that targets the phosphoaceptor site, binds to a CK2 substrate array in vitro but mainly to B23/nucleophosmin in vivo. The CIGB-300 proapoptotic effect is preceded by its nucleolar localization, inhibition of the CK2-mediated phosphorylation on B23/nucleophosmin and nucleolar disassembly. Importantly, CIGB-300 shifted a protein array linked to apoptosis, ribosome biogenesis, cell proliferation, glycolisis, and cell motility in proteomic studies which helped to understand its mechanism of action. In the clinical ground, CIGB-300 has proved to be safe and well tolerated in a First-in-Human trial in women with cervical malignancies who also experienced signs of clinical benefit. In a second Phase 1 clinical trial in women with cervical cancer stage IB2/II, the MTD and DLT have been also identified in the clinical setting. Interestingly, in cervical tumors the B23/nucleophosmin protein levels were significantly reduced after CIGB-300 treatment at the nucleus compartment. In addition, expanded use of CIGB-300 in case studies has evidenced antitumor activity when administered as compassional option. Collectively, our data outline important clues on translational and clinical research from this novel peptide-based drug reinforcing its perspectives to treat cancer and paving the way to validate CK2 as a promising target in oncology.Fil: Perea, Silvio E.. Center for Genetic Engineering and Biotechnology; CubaFil: Baladron, Idania. Center for Genetic Engineering and Biotechnology; CubaFil: Garcia, Yanelda. Center for Genetic Engineering and Biotechnology; CubaFil: Perera, Yasser. Center for Genetic Engineering and Biotechnology; CubaFil: Lopez, Adlin. Center for Genetic Engineering and Biotechnology; CubaFil: Soriano, Jorge L.. Center for Genetic Engineering and Biotechnology; Cuba. General Hospital ‘‘Hermanos Ameijeiras’; CubaFil: Batista, Noyde. Center for Genetic Engineering and Biotechnology; Cuba. General Hospital ‘‘Hermanos Ameijeiras’; CubaFil: Palau, Aley. Center for Genetic Engineering and Biotechnology; Cuba. General Hospital ‘‘Hermanos Ameijeiras’; CubaFil: Hernández, Ignacio. Center for Genetic Engineering and Biotechnology; CubaFil: Farina, Hernán Gabriel. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia, Idrian. Center for Genetic Engineering and Biotechnology; CubaFil: Gonzalez, Lidia. Center for Genetic Engineering and Biotechnology; CubaFil: Gil, Jeovanis. Center for Genetic Engineering and Biotechnology; CubaFil: Rodriguez, Arielis. Center for Genetic Engineering and Biotechnology; CubaFil: Solares, Margarita. Center for Genetic Engineering and Biotechnology; CubaFil: Santana, Agueda. Center for Genetic Engineering and Biotechnology; CubaFil: Cruz, Marisol. Center for Genetic Engineering and Biotechnology; CubaFil: Lopez, Matilde. Center for Genetic Engineering and Biotechnology; CubaFil: Valenzuela, Carmen. Center for Genetic Engineering and Biotechnology; CubaFil: Reyes, Osvaldo. Center for Genetic Engineering and Biotechnology; CubaFil: López Saura, Pedro A.. Center for Genetic Engineering and Biotechnology; CubaFil: González, Carlos A.. Center for Genetic Engineering and Biotechnology; CubaFil: Diaz, Alina. Center for Genetic Engineering and Biotechnology; CubaFil: Castellanos, Lila. Center for Genetic Engineering and Biotechnology; CubaFil: Sanchez, Aniel. Center for Genetic Engineering and Biotechnology; CubaFil: Betancourt, Lazaro. Center for Genetic Engineering and Biotechnology; CubaFil: Besada, Vladimir. Center for Genetic Engineering and Biotechnology; CubaFil: González, Luis J.. Center for Genetic Engineering and Biotechnology; CubaFil: Garay, Hilda. Center for Genetic Engineering and Biotechnology; CubaFil: Gómez, Roberto. Center for Genetic Engineering and Biotechnology; CubaFil: Gomez, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Alonso, Daniel Fernando. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Perrin, Phillipe. No especifíca;Fil: Renualt, Jean Yves. No especifíca;Fil: Sigman, Hugo. No especifíca;Fil: Herrera, Luis. Center for Genetic Engineering and Biotechnology; CubaFil: Acevedo, Boris. Center for Genetic Engineering and Biotechnology; Cub

    Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry

    Get PDF
    Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants

    A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector

    Get PDF
    A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in Run 2 pp collisions at root s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0 sigma (1.7 sigma). The observed upper limit on the cross section times branching ratio for pp -> H -> mu mu is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H -> mu mu signal assuming the absence (presence) of a SM signal is 1.1(2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is mu = 1.2 +/- 0.6. (C) 2020 The Author(s). Published by Elsevier B.V

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Alignment of the ATLAS Inner Detector in Run 2

    Get PDF
    The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at v s = 13 TeV collected by the ATLAS experiment during Run 2 (2015-2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movementswithin anLHCfill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than similar to 0.1 TeV-1 and 0.9 x 10(-3), respectively. Impact parameter biases are also evaluated using tracks within jets
    corecore