1,527 research outputs found

    Weldability of micro-alloyed high-strength pipeline steels using a new friction welding variant

    Get PDF
    An innovative welding method for fully automatic joining of pipelines has been developed. The proposed welding procedure is a variant of the conventional friction welding process. A rotating intermediate ring is used to generate heat necessary to realise the weld. The working principles of the welding process are described. The weldability of the micro-alloyed high-strength pipeline steel API-5L X65 is experimentally investigated. It was found that the new welding process is suitable for joining this material. When welding with a sufficiently low heat input, a high weld quality is obtained. Under these circumstances the weld strength, ductility and impact toughness are high and fulfil the requirements of the commonly used standard EN 12732 for joining pipes

    The data acquisition system of the CHORUS experiment

    No full text
    In the years 1994-1998 the CHORUS Collaboration has recorded data in the CERN WA95 experiment. Here we describe the data acquisition system that has been used, featuring concurrent hierarchical state machines, a remote operating system, a buffer manager, a dispatcher, a control panel and a supervisor

    The data acquisition system of the CHORUS experiment

    Get PDF
    In the years 1994--1998 the CHORUS Collaboration has recorded data in the CERN WA95 experiment. Here we describe the data acquisition system that has been used, featuring concurrent hierarchical state machines, a remote operating system, a buffer manager, a dispatcher, a control panel and a supervisor

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    Get PDF
    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques

    Performance and calibration of the CHORUS scintillating fiber tracker and opto-electronics readout system

    Get PDF
    An essential component of the CERN WA95/CHORUS experiment is a scintillating fiber tracker system for precise track reconstruction of particles. The tracker design, its opto-electronics readout and calibration system are discussed. Performances of the detector are presented

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Observation of weak neutral current neutrino production of J/ψJ/\psi

    Get PDF
    Observation of \jpsi production by neutrinos in the calorimeter of the CHORUS detector exposed to the CERN SPS wide-band \numu beam is reported. A spectrum-averaged cross-section σJ/ψ\sigma^{\mathrm{J/\psi}} = (6.3 ±\pm 3.0) ×1041 cm2\times \mathrm{10^{-41}~cm^{2}} is obtained for 20 GeV Eν\leq E_{\nu} \leq 200 GeV. The data are compared with the theoretical model based on the QCD Z-gluon fusion mechanism

    Prospects for Diffractive and Forward Physics at the LHC

    Get PDF
    The CMS and TOTEM experiments intend to carry out a joint diffractive/forward physics program with an unprecedented rapidity coverage. The present document outlines some aspects of such a physics program, which spans from the investigation of the low-x structure of the proton to the diffractive production of a SM or MSSM Higgs boson

    The CHORUS neutrino oscillation search experiment

    Get PDF
    The CHORUS experiment has successfully finished run I (320~000 recorded \numu\ CC in 94/95) and performed half of run II (225~000 \numu\ CC in 96). The analysis chain was exercised on a small data sample for the muonic \tdecay\ search using for the first time fully automatic emulsion scanning. This pilot analysis, resulting in a limit \sintth \leq 3 \cdot 10^{-2}, confirms that the CHORUS proposal sensitivity (\sintth \leq 3 \cdot 10^{-4}) is within reach in two years
    corecore