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R.G.C. Oldeman7,j), H. Øverȧs3), J. Panman3), C.A.F.J. van der Poel7), F. Riccardi3),
D. Rondeshagen2), A. Rozanov3,k), D. Saltzberg3,l), J.W.E. Uiterwijk7), M. Vander Donckt9,m),

T. Wolff2,n), H. Wong3,o), P. Zucchelli10,p)

Abstract

In the years 1994–1998 the CHORUS Collaboration has recorded data in the CERN WA95
experiment. Here we describe the data acquisition system that has been used, featuring
concurrent hierarchical state machines, a remote operating system, a buffer manager, a
dispatcher, a control panel and a supervisor.
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1 Introduction
In the years 1994–1998 the CHORUS Collaboration has recorded data in the CERN

WA95 experiment [1], designed principally to search for evidence of the νµ → ντ oscillation
phenomenon in the CERN SPS wide-band νµ beam.

A significant ντ component in the beam should reveal itself by leaving tracks of τ particles,
arising from charged current (CC) interactions, in a 770 kg nuclear emulsion target located in
the experimental setup. The τ particles are expected to traverse on average less than 1 mm
before they decay into secondary particles, which may be detected by the electronic detectors
downstream of the target. These detectors serve to identify and record events with signatures
that are compatible with CC ντ interactions in particular. In the analysis stage the tracks of
the outgoing particles are reconstructed from the recorded detector signals. The location of the
neutrino interaction vertex is then determined by extrapolating and following the interesting
tracks back into the emulsion, using automatic scanning microscope systems [2]. Evidence for
a ντ interaction is obtained when the relevant tracks are found to have the correct topology
nearby the vertex. For example, the signature of a decay τ → µν̄µντ is the presence of a kink
between the short τ track and the outgoing µ track.
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Figure 1: Schematic view of the CHORUS experiment. The meaning of the acronyms: A =
anticounter (extra veto), DC = drift chambers, E = emulsion trigger plane, ET = emulsion
tracker plates, H = horizontal trigger plane, HC = honeycomb subdetector, SC = scintillator
layers, ST = streamer tube planes, T = target trigger plane, TM = toroidal magnet, V = veto.
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Experimental Setup
The layout of the CHORUS experiment is shown in Fig. 1. The detector consists of various

subdetectors, most of which are located downstream of the emulsion target. The target consists
of four stacks, interspersed with and followed by planes of optical fibers for high precision
tracking of charged particles. These fibers are connected in groups to CCD cameras, that
record the signals of all channels whenever a trigger signal indicates that an interesting event
just occurred.

Further downstream more fiber optics planes are located in front of and behind the
hexagonal magnet, followed by a set of honeycomb wire chambers (originally by streamer tube
planes). This combined system serves the measurement of the momenta of charged particles.
The total number of optical fibers exceeds one million.

Next comes the calorimeter, which is used to determine the total energies and the direc-
tions of hadronic showers created by neutrino interactions in the emulsion target.

Downstream of the calorimeter the spectrometer serves to identify muons and measure
their momenta with high precision.

The trigger system uses scintillation counters throughout the experiment to signal the
occurrence of interesting events in the target region, in the calorimeter or in the spectrometer.
A trigger signal causes each relevant subdetector to record its signals.

Functionality of the Data Acquisition System
In general the data acquisition (DAQ) system has to perform the following tasks:

• synchronization of the data-taking with the SPS cycle,

• readout of the data stored in the detector front-end electronics,

• event building, i.e. combining for each event the data recorded by all the relevant subde-
tectors,

• validation of the data,

• storage of the data,

• monitoring, logging and

• interfacing with the user.

Further requirements have been imposed on the DAQ, to facilitate its implementation, operation
and maintenance:

• The system should be hierarchical, to allow a staged implementation, independent tests
and replacements of subsections.

• Where possible the functionality should be implemented on a generic (i.e. replaceable)
UNIX derivative.

• The back-end of the readout hardware should be based on the VME industry standard.

• The system should make use of object-oriented programming and graphical user interface
tools.

The requirements have led to the following features:

• High-level interfacing with the user, data monitoring, logging and storage are primarily
implemented on the DAQ back-end consisting of UNIX workstations and servers. The
front-end readout concepts are implemented on top of the OS-9 [4] real-time operat-
ing system running on VME boards. A publish–subscribe server process is used for
communication between the two domains.
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• The front-end DAQ is organized hierarchically, such that a top-level Event Builder
(EVB) system is in control of all subsystems, each of which integrates a group of (re-
lated) subdetectors. This is the normal mode of operation, called global mode. The
subsystems are connected to the EVB through a global VICbus [7].

• Each subsystem is also able to run a stand-alone version of the DAQ, such that it is
independent of the EVB and of the other subsystems. This mode is used for calibrations
and tests of the subdetectors. In stand-alone mode each subsystem sends its events to
its own virtual EVB: in this case the EVB processes are running on the CPU of the
subsystem itself. The distinction between the two modes is kept minimal: the very same
programs are run, with different configuration files.

• In global mode each subsystem is still able to take its own local events as soon as it
has finished processing the global events taken in the preceding burst. Local events are
inhibited shortly before the next burst.

• The real-time operating system has been extended with libraries that provide communi-
cation between a subsystem and the EVB through a buffer manager on top of remote
shared memory.

• The readout in each subsystem is also organized hierarchically, with a VME crate at the
top (back-end) and mostly CAMAC (some VME) crates at the front-end, all connected
through a local VICbus.

• The instantaneous global data rate to be handled may be as high as 4 Mbyte/s.

• The front-end software is written in the object-oriented C++ programming language
wherever feasible, and makes use of an object-oriented finite state machine framework.
The back-end software is written in Tcl/Tk [17], Expect [19], C++, C, Fortran-77, and
shell scripts.

• The DAQ is steered from a graphical Control Panel, which interfaces with a Supervisor
server process ultimately in control of the data-taking.

2 Hardware Architecture and Operation
The CHORUS subdetectors are organized into four DAQ partitions, referred to as sub-

systems: global trigger (TRIG), opto-electronics (OPTO), calorimeter (CALO) and muon spec-
trometer (SPEC). For global data-taking all subsystems together form a single DAQ system,
controlled by the EVB, which collects and combines the data from the subsystems into com-
plete events and sends these to the UNIX back-end via a publish–subscribe server process (see
Sect. 9). Each subsystem can also run in stand-alone mode and record its own (local) data,
being completely independent of the EVB and of the other subsystems.

The front-end of the DAQ system communicates with VME modules in real-time mode.
In total there are 35 intelligent VME processors in the subsystems, all running low-level DAQ
programs on top of the Microware OS-9 [4] real-time kernel. The EVB and all subsystems
can communicate with the UNIX machines via the Ethernet. Fig. 2 shows the DAQ network
topology. The VSB+VME link is discussed in Sect. 9. The CAENET link is discussed in Sect. 10.

In each subsystem the readout modules are located in VME and CAMAC crates inter-
connected by a local VICbus [7], whose bandwidth of 10 Mbyte/s is sufficient to handle the
data rate. The most stringent requirement was set by the OPTO subsystem [3] (see Sect. 3).
Two global VICbus branches connect all subsystems to the EVB. In stand-alone mode the
subsystem’s global VICbus connection is switched off-line. Fig. 3 shows the intelligent VME
crates and their VICbus interconnections.
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Figure 2: The CHORUS DAQ network. Each of the six thin lines connected to the router
represents a 10 Mbps Ethernet segment. The CERN backbone is FDDI.
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Figure 3: The intelligent VME crates in the CHORUS DAQ and their VICbus interconnections.
The dashed lines represent VICbus connections to the dumb crates: 43 CAMAC and two more
VME. The second FIC-8234 in the SPEC subsystem is called TUBE, because it handles the
readout of streamer tube detectors.
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The high-level back-end of the DAQ runs in a standard UNIX environment, for which
IBM AIX 3.2–4.1 has been chosen, running on seven IBM RS-6000 PowerPC workstations
(“QA”. . .“QC” and “Q1”. . .“Q4”) and two CETIA [5] PowerEngine VME boards (“V1” and
“V2”). The back-end is responsible for interfacing with the user, data monitoring, logging and
storage.

All but one of the IBM hosts and all of the OS-9 hosts are on a single Ethernet segment
connected to one port of a router, which primarily serves to shield the DAQ hosts from the rest
of the CERN network. The remaining one IBM host (“QC”) is on a separate port. It is used as
a gateway between the DAQ machines and the CHORUS computing facilities in the computer
center. It has access to both worlds and is not vital for running the DAQ. Its Ethernet segment
is also used by a workstation (“wanf”) for controlling and monitoring the neutrino beam line
(see Sect. 11). Each of the two CETIA hosts has a private segment to the router (see Sect. 9).
Another port is used for NCD X-terminals, used as desktops by the shift crew and by subsystem
experts. A sixth and last port is for a printer and for a PC (“rasnik”) used for recording data
from an optical alignment system (see Sect. 11).

The router was introduced in January 1996. Before that time the online hosts were only
shielded to a limited extent by a bridge. The DAQ used to be frequently disturbed by broadcasts
from the other side. Furthermore, all the online hosts were on a single Ethernet segment, which
was barely able to handle the traffic. The router has been quite important in improving the
stability of the DAQ.

Front-end Operation
In global mode the data-taking follows the pattern of the SPS neutrino burst cycle. In

each cycle of 14.4 seconds protons are extracted from the SPS and steered onto the neutrino
production target in two bursts lasting 6 ms each, separated by 2.7 seconds. During each burst
on average five global events are recorded in the electronics modules of the subsystems, but
the OPTO subsystem is typically involved in only one event per cycle. Immediately after the
burst the TRIG subsystem sends the list of event descriptors to the EVB. For each recorded
event the descriptor indicates which subsystems were involved and should now be contacted to
deliver their data.

For calibration purposes the detector is occasionally (up to four weeks per year) exposed
to π, µ and e beams. For this operation an extra global gate is enabled between the two neutrino
bursts. The readout of the first burst is then delayed until after this gate or after the second
burst. Such a delay normally is unacceptable, because the OPTO electronics can buffer only
two events [3], whereas depending on the selectivity of the trigger (and on the beam intensity)
there may be a non-negligible probability for any cycle to produce three or four events that
may have a vertex in the emulsion. In the end that probability turned out to be only 7 %. This
is due to the excellent performance of the trigger [10], which could not be taken for granted
when the DAQ was being designed.

During normal data-taking the period between the two bursts and the rest of the cycle
(∼12 s) are used for local events: each subsystem is allowed to take such events as soon as it is
ready with the global readout. Such events arise from cosmic rays traversing the detector and
from test pulses sent to the front-end electronics. Local events serve primarily for monitoring
the detector performance and for calibration purposes. These events are not buffered: as soon
as a local trigger occurs, the data are read out by the subsystem and sent to the EVB to be
mixed into the global data stream.
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3 The OS-9 Real-Time Front-End

The task of the OS-9 section of the DAQ is to collect the event data from the electron-
ics modules in the participating subsystems, assemble the portions into complete events, and
send those towards the UNIX back-end, all in synchronization with the SPS burst cycle. Each
subsystem runs a standard set of DAQ processes (described below) on its own VME processor
board, a CES FIC-8234 [7] with one or two Motorola 25 MHz 68040 CPUs and a boot EEP-
ROM that loads the OS-9 real-time kernel and standard server programs from the UNIX file
server via the Ethernet. An OS-9 file system is mounted from the same server through NFS.

The complete DAQ is controlled by a group of EVB processes. In global mode these
processes run on their own dedicated FIC-8234 and collect the data from the TRIG subsystem
and any other participating subsystems. In stand-alone mode the processes run directly on the
subsystem FIC-8234 and only collect the data from the subsystem in question.

The subsystem DAQ comprises a main process, a trigger process, optionally a data read-
out process and optionally a histogram process. The main process controls the other processes
and in the absence of a data readout process it also deals with reading out all the relevant
electronics modules at the appropriate times. Global events are read out after the neutrino
burst, when the main process has received the list of global event descriptors from the EVB.
A local event is read out when the main process receives a (single) local event descriptor from
the trigger process. All events are prepared in the memory of the subsystem’s global VICbus
connection module, a CES VIC-8251 [7]. The EVB is then notified and reads the prepared data,
through the VICbus in a global DAQ, through VME in a stand-alone DAQ.

The OPTO subsystem [3] has the most complicated DAQ of the four subsystems. In
particular it comprises 29 ELTEC SL-30 [8] image processor VME boards (see Fig. 3), all
running local front-end processes on OS-9. These modules can buffer only two events, but even
after zero-suppression their combined data for one burst may add up to 4 Mbytes. When the
DAQ was being designed it was not evident that the OPTO main program would always be
able to deal with such an amount of data in the limited time between the two bursts of a cycle.
However, as soon as the data of the first burst have been copied from an SL-30 video buffer
to its main memory, it is ready for new events. The EVB does not need to receive the actual
events immediately. Therefore the OPTO main process delegates the readout to the OPTO
read process and only waits until all SL-30s have signaled that they can receive new events.
The readout process is also responsible for loading OS-9 and the necessary programs into each
SL-30 through the local OPTO VICbus.

The monitoring of event data distributions can be performed directly on the FIC-8234 of
each subsystem by a local histogram process, which is also under control of the main process.
It accesses the event data through shared memory. In a later stage of the experiment this
functionality was fully moved to the UNIX back-end, because of negative interference with the
rest of the DAQ processes on OS-9 (see Sect. 8).

A subsystem DAQ comprises multiple processes that need to communicate with each other
and with the EVB. Each process uses a buffer manager C++ class to establish communication
through message queues and semaphores (see Sect. 5). In a stand-alone DAQ all processes are
running on the same CPU and the buffer manager only needs to make use of OS-9 system
functions. In the global DAQ the EVB runs on its own FIC-8234, connected to each subsystem
via the VICbus. For this case a new system service has been developed, the Remote Operating
System (REMOS). It provides system functions allowing processes running on different FIC-
8234 modules to communicate through the VICbus. This is described in the next section.
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4 The Remote Operating System (REMOS)
REMOS [9] provides primitives for remote OS-9 processes to communicate through VME,

via a VICbus when they run on CPUs in different crates. In REMOS the VICbus is referred to
as bridge.

The VICbus allows parts of the local VME addressing space to be mapped onto similar
or different parts of the VME addressing spaces in remote crates. This provides a local VME
master with access to the backplane of a remote crate, such that it can read from and write to
remote modules as if they were placed in the local crate. Not only can data thus be transferred
between crates, but also interrupts may be generated in a remote crate. When a flag is set in a
mailbox register of a VIC-8251, then that module will generate either a VME interrupt in its own
crate, or a VICbus interrupt in a remote VIC-8251, depending on the register’s configuration.
The remote VIC-8251 is configured to generate a VME interrupt for each incoming VICbus
interrupt. In either case we end up with an ordinary VME interrupt in the destination crate.

A local VME master may thus signal a remote master that data are present in some well-
known location. A VME slave cannot transfer any data itself, but it is able to generate a VME
interrupt, handled by the local VME master. The notions of master and slave are also found
on the VICbus. On both global VICbus branches the EVB is the master and the subsystems
are the slaves (see Fig. 3).

A basis for bidirectional communication over a VICbus is now established:

• The EVB FIC-8234 may put a message into a reserved portion of the memory of the
subsystem VIC-8251 slave module, and then set a flag in a mailbox register in that
module. The slave then generates a VME interrupt, handled by the subsystem FIC-8234.

• A subsystem FIC-8234 may put a message into another reserved portion of the memory
of its VIC-8251 slave module and set a flag in another mailbox register in that module.
The slave then generates a VICbus interrupt in the master VIC-8251 in the EVB crate.
That module then generates a VME interrupt, handled by the EVB FIC-8234.

• The OPTO FIC-8234 may put a message into a reserved portion of the memory of an
SL-30 VME slave and manipulate an interrupt register in that module to signal it.
An SL-30 may put a message into another reserved portion of its own memory and
generate a VME interrupt. In OPTO crate 1 (see Fig. 3) it is directly handled by the
OPTO FIC-8234. In crates 2 and 3 it is handled by a VIC-8251 slave module, which has
been configured to convert the VME interrupt into a VICbus interrupt in the master VIC-
8251 in crate 1. That module then generates a VME interrupt, handled by the OPTO
FIC-8234.

• In the SPEC subsystem the two FIC-8234 modules communicate through a local VICbus,
with the SPEC crate acting as master and the TUBE crate as slave.

In each case the messages are sent through an OS-9 process named bridge send. The ac-
companying remote interrupts are handled by an OS-9 interrupt driver developed for REMOS,
which uses OS-9 primitives to wake up an OS-9 process named bridge rcv, which has regis-
tered itself as the user-level handler for such interrupts. This process examines the header of
each message and forwards it to the DAQ process indicated as the intended recipient.

It must be noted that REMOS provides no guarantee that a message has been received
by the intended recipient. It is up to higher level DAQ software to determine when the remote
end is misbehaving, e.g. when it fails to reply within a given time window. A hang-up of some
OS-9 CPU ultimately leads to error messages in the UNIX back-end. The only cure is to restart
the whole DAQ (see Sect. 10).
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Times are in µs Local Local Remote
OS-9 REMOS REMOS

Semaphore signal 17 133 133
Semaphore wait 18 230 825

Null RPC 205 205 800

Table 1: The performance of REMOS under optimal conditions.

It must also be noted that the communication scenarios described above are only used
for very short REMOS control messages, for which small portions of the VIC-8251 and SL-
30 memories are permanently allocated. True DAQ messages are exchanged through shared
memory, as described below and in the next section.

Addressing in REMOS
In general, for communication between processes to be possible, each of them must have

an address through which it is uniquely identified. In REMOS the address of a process is given
by its global process identification (GPID), which consists of two parts: a globally unique
part identifying the CPU on which the process is running, and a locally unique number for each
process on the CPU. The global part is determined by the VICbus branch and crate numbers,
and in essence by the VME slot number (i.e. VME address range) when the crate contains
multiple VME boards running REMOS services. The local part of the GPID is fixed for the few
REMOS service processes, and dynamic for the REMOS clients. On each participating CPU,
the first process that intends to make use of REMOS services, creates by means of its own
internal remos manager object a shared local table containing one remos port object per
process. The slot number of any process serves as the local part of its GPID.

A remos port is the handle for communication between a client and a local REMOS
service process. For example, when a service process wants to send a message to a client, it first
establishes a lock on an OS-9 semaphore within the client’s remos port, after which it puts
the message into the port’s data buffer; then it signals on another semaphore that a message
is waiting to be read, which wakes up the client, if necessary; finally, it releases the lock.

In the table of remos port objects the first slot is reserved for the remos process. This is
the process that manages the global process table, global shared memory and global semaphores.
In this functionality it acts as a remote operating system indeed. On each subsystem that is
participating in a global DAQ, the remos process is represented by a proxy, which forwards
incoming messages to the true remos process running on the remote EVB CPU. The next two
slots in a remos port table are reserved for bridge send and bridge rcv, and the rest of
the table is for client processes.

The table is identified by a name which indicates its role in the DAQ, e.g. evb for
communication between a subsystem and the EVB. This allows each subsystem to instantiate
also a local REMOS to facilitate communication between CPUs in different crates within the
subsystem. This approach has indeed been followed in the OPTO subsystem, where a local
instance of REMOS is used for the communication between the FIC-8234 and the 29 SL-30s.
Their remos port table is named opto. Also for the SPEC subsystem a local instance of
REMOS was prepared to facilitate the communication between its two FIC-8234 modules, but
by that time a custom solution had already been in use for a while and in the end the spec
REMOS was never used. The three REMOS instances are shown in Fig. 4. Table 1 shows the
performance of REMOS under optimal conditions.
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Each process using REMOS facilities registers itself by name with the remos master
process, which allocates a slot for it in the global process table. A process name starts with the
name of the subsystem and ends with a piece indicating the role of the process, e.g. opto read
and evb main. A similar naming convention is used to allow any two DAQ processes to establish
multiple communication channels between them. This functionality is implemented by the buffer
manager, on top of REMOS as well as OS-9. REMOS is only used to register DAQ processes, to
allocate or release global shared memory and to operate global semaphores. The corresponding
messages are very short and use a permanently reserved part of the memory of each VIC-8251
and SL-30. True DAQ control and event data messages are exchanged through shared memory,
which is formatted by and accessed through the buffer manager.

5 The Buffer Manager
Within each DAQ process on OS-9 a buffer manager C++ object handles multiple

buffered communication links with one or more other DAQ processes. Each link is implemented
as a shared message queue or semaphore with a predefined name that is known to both par-
ties. A semaphore is essentially implemented as a FIFO of signal requests, and a process is only
blocked when it issued a wait request while the FIFO is empty. A message queue is implemented
within an identically named shared memory segment, which usually is obtained through OS-9
when all users of the queue are known to run locally, and otherwise through REMOS. In the
latter case the evb REMOS will allocate a portion of the on-board memory of the VIC-8251
module in the subsystem crate. The opto REMOS will allocate a portion of the on-board
memory of the SL-30 from which the request was issued. This allows all subsystems and SL-30s
to prepare their event data in parallel, with an acceptable level of contention for the VICbus
and the remos master process.

To add a new message to a queue a process first establishes a write lock on that queue
by waiting on a corresponding semaphore, thereby suspending any concurrent write attempts
(control messages can come from multiple sources). If the queue is full, the process waits on a
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semaphore to be signaled as soon as the (single) reader has drained the queue sufficiently. Next
the process acquires a mutex lock on the queue, after which it can allocate a free buffer and
update the message queue data structure. The mutex lock is then released to allow the reader
to read any waiting messages. At the same time the writer process can copy the message data
directly into the buffer, using at most the local VME bus resource. Next it acquires the mutex
lock once more to update the data structure with the final size of the message, and releases the
write lock. If the reader is currently waiting on a semaphore because the queue was empty, the
writer signals that semaphore. Finally it releases the mutex lock.

Since the EVB is usually communicating with multiple subsystems, whenever a message
has been prepared for the EVB, a signal is sent to a globally known REMOS semaphore, which
wakes up the EVB process if necessary, and indicates which subsystem has a message ready.
On each subsystem the main process has various message queue links with the EVB: an input
queue for receiving control messages (also from other processes in the subsystem DAQ), an
output queue for sending status messages to the EVB, and another output queue into which
the event data are made available to the EVB. For simplicity these links are always obtained
through REMOS, even in a stand-alone DAQ, in which case the subsystem’s global VIC-8251
simply serves as a memory module.

6 The OS-9 DAQ Processes
The OS-9 side of the DAQ is divided into the EVB and the subsystems. The EVB is in

control of the subsystems, each of which is in control of its own detector hardware. Both on the
EVB and on each of the subsystems the implementation of the necessary functionality has been
spread over various cooperating processes. This allows the DAQ to do various tasks in parallel,
to proceed even when a particular process is waiting e.g. for an I/O request to be handled by
OS-9. Most processes are in an infinite loop of waiting for the receipt of a message in the input
queue and carrying out the associated action within a predefined time.

The EVB Processes

1. evb main – This process controls all other DAQ processes, keeping track of their status. It
is steered itself by user command messages from the evb in process, and status messages
from the other processes on the EVB and on the subsystems. On the receipt of a message
it performs an action, possibly delegating the real work to one of the other DAQ processes.
In that case the relevant process is supposed to confirm within a predefined time that the
work has been done. This is enforced by having the evb timer process regularly send
wake-up messages to evb main, until the relevant timer has expired. If the confirmation
still has not been received, evb main gracefully stops the DAQ, after sending diagnostic
information to the user.
All status information is made available to the user through the evb dsp process, which
forwards messages to the dispatcher process running on the UNIX back-end (see Sect. 9).
After each neutrino burst evb main receives the list of event descriptors from the TRIG
subsystem. For each event (i.e. hardware trigger) the descriptor indicates which subsys-
tems are supposed to have recorded data in their front-end electronics modules. The list
is broadcast to all subsystems, which then put their data in their data output queues.
Whenever a subsystem has data ready for the oldest incomplete event, evb main signals
the evb write process to handle that portion.

2. evb write – This process takes care of writing the event data to stable storage. Each
subsystem puts the data for a particular event as a message into its data output queue
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and signals evb main. The message is formatted as a sequence of banks, each consisting
of a header identifying the event, followed by the data of a particular subdetector. The
task of evb write is to combine all banks of all subsystems into complete events, and
write those in ZEBRA [20] format to stable storage. The global DAQ originally used
IBM 3480 tapes operated by a drive directly connected to the EVB FIC-8234. For a local
DAQ originally a local Exabyte drive was used, or an NFS-mounted file system. In any
case, the event data are first copied into a shared message queue on OS-9, such that the
evb dsp process can forward them to the dispatcher process on UNIX, which in turn
makes the data available to various monitoring tasks. This allowed the EVB tape drive
to be abandoned in the course of 1996, when its operation had become unstable. Since
then the event data are saved by a dedicated UNIX task (see Sect. 10). Also the local
DAQs profited from this change.

3. evb dsp – This process is instructed by evb main and evb write to send status mes-
sages and event data to the dispatcher process running on the UNIX back-end (see
Sect. 9). In fact there are two evb dsp processes. One is used to send event data and
urgent messages. The other buffers its input to send bursts of 16 kbytes, thereby reducing
the bandwidth consumed per message.

4. evb timer – This process is instructed by evb main to send back a reply after a specified
time-out. At the arrival of the reply, evb main checks if in the meantime it has received
the confirmation from another DAQ process that a particular command has been carried
out. If the relevant timer has expired, the DAQ is terminated.

5. evb in – This process converts user commands to control messages which are sent to
evb main. Under normal operation the user sends commands by invoking a UNIX front-
end program that forwards them to evb in through a direct socket connection. The
front-end sends a copy of each command to the dispatcher such that it is logged (see
Sect. 11). In principle evb in could have been changed to receive its input from the
dispatcher when that option became available.

The Subsystem Processes

1. subs main – This process controls all DAQ processes pertaining to the subsystem. It is
steered itself by command messages from evb main and by status messages from the
other local processes. Once every minute it is asked by the EVB to confirm that it is still
alive. A library provides the generic part of the code, which handles the communication
with the rest of the DAQ. Programmers of the subsystem specific code (“subsystem ex-
perts”) only have to fill in a few subroutines, which are invoked at well-defined occasions,
e.g. when the DAQ is initialized, when a run is started, when event data are to be read out
etc. For all subsystems except OPTO, subs main itself reads the data from the front-end
electronics and prepares the corresponding banks in a shared message queue on OS-9,
such that the subs hist process can access them for monitoring purposes. The banks are
then copied into the data output queue of the subsystem.
The presence of global events is signaled by a message from evb main giving the event
descriptors, whereas the presence of each single local event is signaled by a message from
the subs cirq process. Each global event descriptor contains an event tag, a 32 bit
quasi-random number that should be identical to the value stored for the corresponding
event by the subsystem’s buffered pattern unit (BPU [10]). Upon each global trigger
the BPU modules of all subsystems store the current value of a shared 500 kHz counter
operated by the TRIG subsystem. By this mechanism it is easily detected whenever the
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event data in a particular subsystem get out of synchronization with the rest of the DAQ.
The subsystem specific code has to check itself if all its other electronics modules contain
the correct number of events.
When the global events have been handled, and also whenever a local event has been
handled, subs main sends a message to the subs cirq process to allow for another local
event. The reply from subs cirq may be a local event descriptor message, but eventually
it will be a preburst message, indicating that the next neutrino burst is supposed to
arrive in about one second. Local events are then inhibited until the global events of the
burst have been processed.
At the start of a run (requested by evb main) the subsystem specific code can indicate
that it first needs calibration events. In that case subs main delays sending an acknowl-
edgement to evb main and temporarily enables the local trigger. The subsystem specific
code must ensure that the actual events are suitable for calibration, e.g. by arranging for
a pulser to fire in synchronization with the trigger. Each local event will be marked as a
calibration event, until the subsystem specific code indicates that the necessary number of
such events has been reached. After that the local trigger is disabled and an acknowledge-
ment is sent to evb main indicating that the subsystem is ready for real events. When
every participating subsystem has sent an acknowledgement, evb main will usually let
each subs main enable its local trigger. In a global DAQ, however, the local trigger of
any subsystem may be kept disabled when its local events are unwanted.

2. subs cirq – This process operates the CIRQ [10] VME trigger module of the subsystem.
For each accepted local trigger or preburst signal the CIRQ generates a VME interrupt
that is handled by subs cirq, which then sends a local event descriptor or preburst
message to subs main. The CIRQ ignores further input signals until it is explicitly reset
by subs cirq, which happens when subs main requests another local event. subs cirq
then starts waiting for an OS-9 semaphore to be signaled either by a custom-written
VME interrupt driver, or by subs main itself, indicating that a message is waiting, in
particular a request to disable the local triggers immediately.
Global triggers are recorded by the trig cirq process running in the TRIG subsystem.
During the 6 ms neutrino burst trig cirq continuously polls a register in its CIRQ mod-
ule, which signals that a trigger has occurred. Interrupts are not used during the burst,
since their overhead would give too much dead-time. Another register shows which sub-
systems received the trigger. As soon as a subsystem has reached the maximum number of
events it can buffer, trig cirq applies a local veto to shield that subsystem from further
global triggers. The 6 ms burst is handled in an 8 ms physics gate, the polling is done
over a 32 ms wide gate. After the burst trig cirq sends a list of global event descrip-
tors to the EVB. Before the next burst, trig cirq expects all participating subsystems
to have signaled a shared REMOS semaphore, indicating that they are ready. As long
as there is any subsystem not ready, further global events are inhibited and diagnostic
messages are sent to the user. This situation usually occurs when the EVB and hence the
subsystem accumulate a backlog in the processing of event data. Another possibility is
that the subsystem has stopped working altogether.

3. subs read – This process, when present, is responsible for reading the event data from
the hardware and storing them in the form of banks into the data output queue buffer
allocated by subs main. This approach has only been taken in the OPTO subsystem,
to allow opto main to signal that the OPTO is ready for new events as soon as every
SL-30 has signaled that it has copied the current data from its video buffer to its main
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memory. The communication with the SL-30 processes is based on semaphores and shared
memory, all obtained through the OPTO REMOS. Extra communication links between
opto main and opto read are provided by a semaphore and a shared memory module,
both obtained through OS-9. opto read prepares the actual events asynchronously,
makes them available to opto hist and copies them into the data output queue. Handling
of the second burst in the cycle is delayed until the data of the first burst have been
processed.

4. subs hist – This process originally served to calculate event data distributions for mon-
itoring purposes. Its input was provided by subs main or subs read in a shared OS-9
message queue. The results were sent via the EVB to the dispatcher. Because of nega-
tive interference with the rest of the subsystem DAQ (see Sect. 8), this functionality has
been moved completely to the UNIX back-end.

7 The Concurrent Hierarchical State Machine Language
Each of the OS-9 DAQ processes has been constructed to run as a finite state machine.

First the set of states in which it can be, has been defined, followed by the set of allowed state
transitions, and finally the set of actions that should be performed on these state transitions.
Each state transition is provoked by the occurrence of a specific stimulus, generally called a
state transition event, and typically caused by the arrival of a corresponding message. Each
transition has an associated set of brief, non-blocking actions to be performed, after which the
process is again in one of the defined states, waiting for the next transition message.

The first versions of the OS-9 DAQ programs were written directly in C++. The total
amount of code, including configuration and test programs and support libraries, comprises
about 50k lines (1.2 Mbytes) and 80 classes. In spite of the object-oriented features of C++,
debugging the DAQ was hindered by the code being a mix of state machine concepts and
transition actions.

A proper implementation of each program was greatly facilitated in the end by employing
an extra programming language on top of C++, but only after it had first been improved
significantly: CHSM [11]. This language allows for an easy implementation of Concurrent
Hierarchical State Machines within a single program. The CHSM code defines the set of states,
transitions, and transition events, using a syntax which is reminiscent of the YACC [12] compiler
generator language. As an example a part of subs main is shown in Fig. 5.

The CHSM directives are interspersed with C++ code in which the transition actions
are implemented. The CHSM compiler translates also the state machine framework into C++,
such that the resulting code can be further processed by a standard C++ compiler.

The concurrency feature of CHSM allows a single program to be implemented as a set
of parallel state machines, each of which dealing with a particular task and having its own
collection of states, events, transitions and actions. The running program has a current state
in each of the machines, and may make a transition in each of them on the receipt of a single
message. The order of the transitions is specified by CHSM. As an example, the evb main
program defines a state machine to keep track of the global DAQ status, a second machine
to handle communication with the subsystems, a third to communicate with the evb write
process that writes the CHORUS event data to stable storage, a fourth to deal with time-outs,
a fifth to stop the DAQ gracefully in case of a problem, and finally a sixth that responds to
user command messages.

Each of the state machines is implemented as a cluster of states. The running program
has only a single current state in such a cluster. However, the hierarchy feature of CHSM allows
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each state itself to be implemented as a set of state machines. For example, as far as its first
state machine is concerned, evb main can be either initializing, or functioning, or terminating;
when it is functioning, it still has a lot of complexity to deal with; therefore the details have also
been implemented as a set of state machines. One such low-level state machine is dealing with
messages sent by subsystems, e.g. notifications that the data of particular CHORUS events have
been prepared in data output queues. Another machine keeps track of the detailed status of
the EVB, which either is idle, starting a run, running, pausing the run, continuing it, stopping
it, or stopping the DAQ.

Using the CHSM framework one can only describe and control the states of a single
process. To keep the various DAQ processes synchronized, the proper messages must be sent
at the proper times. For example, when subs main receives a message requesting the run to
be paused, it must itself send a message to subs cirq to disable the local triggers. On the
other hand, a message might also arrive unexpected. For example, due to a programming error
there was a small probability that the EVB would still receive one extra local event descriptor
after the local triggers supposedly had been disabled. Since such a message was not expected at
that time, it did not generate any transition and was silently ignored. The corresponding event
data were still pending at the head of the subsystem’s data output queue, though. Those data
would have been used erroneously to build the next (global) event, if it had not been for the
mismatch of the event tag, allowing this desynchronization to be detected by evb write. In
a more robust derivation of CHSM, however, it should be possible to preclude such problems,
e.g. by raising an exception whenever a particular message generates zero transitions.

8 Performance of the OS-9 Front-End
For the main operation of the CHORUS experiment (1994–1997), during each of the two

neutrino bursts per SPS cycle typically five global events were recorded in 6 ms and had to
be processed in about 1.5 s. The corresponding amount of data turned out to be less than
250 kbytes on average, but could be as large as 4 Mbytes when the OPTO subsystem was
involved. In the 12 s interburst period, each subsystem could take local events. The combined
local data rate was less than 50 kbytes/s on average.

Before the DAQ was designed, estimates of these data rates had been obtained from
Monte Carlo simulations, but especially concerning the OPTO subsystem there was doubt if
the real data would be sufficiently sparse to allow for the efficient compression (by a factor 100)
finally achieved. Therefore it was judged wise to increase the speed of each FIC-8234 by some
30 % by disarming the Memory Management Unit of its MC-68040 CPU(s). This measure not
only reduces the context switching overhead, but also allows each process to read and write
anywhere in the CPU and VME address spaces, circumventing the operating system. At the
same time, however, it increases significantly the difficulty of debugging the DAQ programs,
since segmentation violations can no longer be trapped, allowing any process to crash another
process, or even the operating system. In particular this is a problem when a DAQ program
contains “user” code, i.e. routines filled in by the subsystem detector experts, who are not
necessarily programming experts. To reduce the amount of such code running on OS-9, it was
decided to move the data monitoring completely to the UNIX side of the DAQ and switch off
the OS-9 subs hist processes, thereby significantly improving the stability of the DAQ. In the
end the DAQ needed to be restarted once per day on average, usually because of a crash in the
OPTO subsystem. The procedure to restart the DAQ takes a few minutes and is described in
Sect. 10.
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// ...
void gen::do_prepare_run() { /* ... */ }
%%
machine gen_mach : gen {

set mach (the_main, responder) is {
cluster the_main (undefined, active) is {

state undefined {
ev_init -> active %{ do_init(); %};

}
set active (main, read, cirq, hist) is {

cluster main (starting, ready, running, quitting, quit) is {
state starting {

ev_daq_ok -> ready %{ finish_startup(); %};
}
state ready {

ev_prepare_run -> running %{ do_prepare_run(); %};
ev_sys_quit -> quitting;

}
state running {

// ...
ev_end_run -> ready %{ handle_end_run(); %};

}
state quitting {

ev_child_quit(active_children == 0) -> quit %{
acknowledge_quit();

%};
}
state quit;

}
cluster read (undefined, running, quitting) is { /* ... */ }
cluster cirq (undefined, running, quitting) is { /* ... */ }
cluster hist (undefined, running, quitting) is { /* ... */ }

}
}
state responder {

ev_message -> responder %{ handle_message(); %};
// ...

}
}

}
%%
class gen_main : public gen_mach { /* ... */ };
// ...
int main (int argc, char *argv[]) {

// ...
gen_main *the_gen_main = new gen_main();
the_gen_main->ev_init();
// ...

}

Figure 5: Example of Concurrent Hierarchical State Machine code.
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The DAQ has been designed to distinguish as little as possible between global and stand-
alone operation. For example, even in stand-alone operation the DAQ is controlled by the EVB
processes, in this case all running on the subsystem CPU, as indicated by dynamic configuration
files. Furthermore, since the four subsystems differ quite a bit in their characteristics, the DAQ
software has needed to be quite generic. This has allowed the software to be employed also
outside the main context of the CHORUS experiment. First of all a stand-alone DAQ has been
used in the CERN RD46 [13] experiment which investigated the performance of new optical
capillary detectors in conjunction with the CHORUS experiment. The experiments had one
trigger in common, already foreseen in the CHORUS DAQ software. Secondly a stand-alone
DAQ has been used to debug the new Honeycomb subdetector [6] which was incorporated into
the TRIG subsystem in 1996. Finally a modified stand-alone DAQ has been employed in two
pion “testbeam” experiments at the CERN Proton Synchrotron.

For the operation of the CHORUS experiment it does not matter that for each event the
total overhead of control messages is as large as 10 ms (cf. Table 1). During the burst the data
are buffered in the electronics modules, and when after the burst the data are collected and the
events are built, the overhead can easily be tolerated. For local events this overhead has also
been acceptable. In the testbeam experiments, however, it turned out to be unacceptable.

In those experiments the data-taking cycle had a length of 14.4 or 19.2 s and contained
two or three bursts separated by 4 s or more and lasting 350 ms each. Unfortunately most of
the employed electronics modules did not have a buffering capability and thus had to be read
out immediately after each trigger. In an unmodified stand-alone DAQ the maximum data rate
would then be about 35 events per burst and the dead-time would approach 100 %. To improve
the performance quite significantly, the following measures were taken:

• The subs cirq program was incorporated into the subs main program, thereby elimi-
nating the overhead of the local event descriptor message.

• The event data were temporarily stored by subs main in private memory, delaying the
true event building and its buffer manager overhead until the end of each burst, signaled
by a special trigger.

• After the event building subs main sent a message to a trivial helper process (a piece of
the original subs cirq), requesting an immediate “wake-up” reply ordering the prepa-
ration for the next burst, i.e. a tight loop of waiting for triggers and handling them. If
in the meantime another message had arrived, that one would be handled first, allowing
e.g. the run to be paused, in which case the wake-up reply would be ignored.

With these measures the readout overhead during the burst became negligible (< 0.1 ms per
event) with respect to the time needed for the actual readout of the electronics modules (∼5
ms per event).

9 The Dispatcher
The event data and status messages of the OS-9 DAQ processes are made available to

the high-level side of the DAQ through the dispatcher process running on the UNIX host
controlling the DAQ. The dispatcher is a general-purpose message-based data distribution
program provided by the freely available ControlHost package [14]. A library provides sub-
routines for a process to connect itself to the dispatcher, to send messages to interested
processes, and to receive selected messages from them. Each message consists of a header and
a body. The header indicates the length of the body and contains a tag which identifies the
type of the data in the body. A tag is a string of up to eight ASCII characters. The body of a
message is not interpreted. When a client process intends to receive data, it must first supply
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a subscription list containing the tags in which it is interested. Then, whenever a message is
sent to the dispatcher, a copy is in principle made available via shared memory or a socket, to
all clients that are subscribed to the corresponding tag. Normally the message is only received
by those interested clients that are actually waiting for a message. However, a process may
also indicate in its subscription list that it wants to receive all messages with particular tags.
Each such message is then kept around until all such processes have received it. The danger
associated with this option is that the memory of the dispatcher may fill up when clients
cannot keep up with the rate of incoming messages. Data monitoring processes do not use this
option, since they can perform their tasks with only a fraction of the events. There are also
processes, however, that cannot afford losing even a single message: the diskwriter has to
save all events, and various control processes need to receive all status messages (see Sect. 10
and 11).

Messages are also used by some clients to send commands to other clients, all running on
UNIX. In principle the dispatcher could also have been used to send commands to the evb in
process on OS-9, but by the time the dispatcher was available a direct socket connection had
been in use for a while and in the end the code was never adapted. A copy of those commands is
still sent to the dispatcher, though, to allow them to be logged together with other commands.

Commands can also be sent to the dispatcher itself, e.g. to obtain the current list of
clients, their tag subscription lists, and statistics. Each client usually registers itself, with a
name of up to eight characters. For each such registration the dispatcher sends a message
itself to all clients subscribed to the tag “Born”; the message body contains the name of the
new client. Whenever a process disconnects from the dispatcher a message with tag “Died”
is sent. The dispatcher can also report if a particular client is currently connected. These
facilities allow control processes to monitor important clients.

Each of the UNIX hosts in the CHORUS DAQ cluster starts a dispatcher process
at boot time. For a stand-alone DAQ one of five IBM RS-6000 PowerPC workstations (see
Fig. 2) is chosen and its dispatcher is used in the DAQ. In that case only the Ethernet is
used for the communication between UNIX and OS-9. In a global DAQ the dispatcher runs
on a CETIA RS-6000 PowerEngine VME board. Also this machine has IBM AIX 4.1 as its
operating system. As Fig. 2 shows, originally a private high-bandwidth channel was foreseen
for the communication between the EVB FIC-8234 and the PowerEngine, located in a different
VME crate (see Sect. 10): first the FIC-8234 would write the data through a VSB connection into
a 64 Mbyte memory module [15] located in the crate of the PowerEngine; then the dispatcher
would be notified via the Ethernet; finally the PowerEngine would read the data through VME
from the memory module. The VSB connection was driven by a pair of rear-mounted cards [16].
Buffers were allocated in the memory module following a simple round-robin algorithm. Each
buffer had a flag that was cleared by the dispatcher as soon as it had no more need for the
buffer contents. In principle this scenario worked as expected, but the FIC-8234 was observed
to crash more frequently when its VSB interface was being used. Since the bandwidth of the
Ethernet turned out to be sufficient after all to cope with the data rate of the global DAQ, the
VSB approach was abandoned in the end. This was made possible by the router. A VICbus
connection was not tried at all, because the newly available VSB link was supposed to be faster,
simpler to set up, and more reliable. It was observed that VICbus modules occasionally needed
to be reset by a VME sys-reset signal or even a power cycle, by which the stability of the
UNIX back-end would have been impaired. The PowerEngine has a private Ethernet link to
the router, such that the other DAQ hosts do not see the traffic generated by copying the data
runs to the computer center (see Sect. 10).
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10 Control Panel and Supervisor
The high-level back-end of the DAQ has been implemented on UNIX. Virtually all of

the relevant processes are clients of the dispatcher and most of them have graphical user
interfaces (GUIs). The experiment is controlled from five IBM RS-6000 PowerPC workstations
(see Fig. 2), each having two large screens displaying the Control Panel and current results of
various data monitoring processes.

The graphical control panel has been implemented in the Tcl/Tk [17] programming lan-
guage, whose interpreter was extended with support for communication with the dispatcher.
The code amounts to about 9k lines (∼300 kbytes). Since the panel is the primary interface
between the user and the DAQ, it must try and ensure that all DAQ programs are functioning
properly. Any problems detected are reported to the user through pop-up windows, but may
also cause the panel to take a corrective action itself.

The panel is used to control the global DAQ as well as each stand-alone DAQ, the only
differences being in the configuration files. This implies that multiple instances of the panel
may be active at the same time. Each subsystem (and the EVB) can only be controlled by one
panel at a time, either for the global DAQ or a stand-alone DAQ. Furthermore, to simplify
matters, only a single panel instance is allowed per UNIX host. Therefore, when a panel is
started, it first contacts its own dispatcher to see if another panel happens to be connected
already. If that is not the case, it sends a message with tag “panel” and as body the string
“which-systems” followed by the name of its own UNIX host, to the dispatcher on each
of the other UNIX hosts. A connected panel, if any, would reply by sending a message to the
indicated UNIX host, with tag “panel” and as body the string “systems-in” followed by a
list of subsystem names. When any of the necessary subsystems is thus found to be in use, the
user is notified and the panel quits. Otherwise, for a global DAQ the panel then prevents the
user from including any subsystem already taken by a stand-alone DAQ.

Figure 6: The CHORUS control panel. Details are described in the text.
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The Panel User Interface
A realistic appearance of the global DAQ panel is shown in Fig. 6. However, most of the

coloring has been suppressed here, to allow all texts to be readable. The canvas is divided into
various sections showing information about the current status of the DAQ, and allowing the
user to control various aspects. The many status fields and “lights” are updated according to
the messages received through the dispatcher. The “run information” section displays the
progress of the current run as far as global events are concerned. The “output stream” text
field indicates here that the events are sent from the EVB to the dispatcher, to be written to
a “remote tape” by a client of the dispatcher. The “events triggered” text field shows
the number of global events and between parentheses the number of true coincidence triggers,
the difference being the number of neutrino bursts, each of which leading to one extra event for
the readout of burst scalers. Such scalers are used e.g. to count the number of beam-induced
muons that traverse the emulsion target.

The “loaded trigger file” section displays the operating conditions of the TRIG
subsystem. Here they reflect the normal data-taking, with two neutrino bursts per SPS cycle
and a mixture of enabled trigger types, including the trigger shared with the RD46 “pilot”
project (see Sect. 8). The “date and time” section shows when the DAQ was last restarted
according to the EVB, and the current time according to UNIX host running the panel.
From the example picture can be concluded that the system clocks were not always precisely
synchronized. The “message” section informs the user of the progress whenever the panel is
busy with a time consuming procedure, e.g. starting the DAQ. Such messages are also sent to
the dispatcher, allowing easy monitoring through the screen logger (see Sect. 11), which
displays all control messages sent by all dispatcher clients.

The “subsystem status” section has a “status light” not only for each of the subsystems
(and the EVB), but also for the “slow control” (see Sect. 11) and the “unix tasks,” the
latter being the important data monitoring dispatcher clients. A status light is green when
its “subsystem” is functioning properly, and red when there is a serious problem. The lights of
the four true subsystems are yellow when the DAQ is ready for a run to be started. During the
starting of the DAQ they go through various shades of gray, reflecting the progress. The next
column of “info” buttons allows the user to pop up a window containing recent warnings and
error messages pertaining to the subsystem. The number of error messages for the current run
is counted in the adjacent column. Whenever such a counter increases, its background changes
from white to yellow, to indicate that new error messages are to be read in the associated pop-up
window. The last column contains the number of local events for each of the true subsystems.

The lower half of the panel contains various elongated buttons on the left and right
sides. The “supervisor” button allows the user to restart the DAQ supervisor program
(see below). Here the button is disabled, because the supervisor is working fine, as far as
the panel is concerned. Each minute the panel sends a message to the dispatcher asking
the supervisor to respond, thereby confirming that it is active. Only when the supervisor
fails to respond, is the restart button enabled. The “automatic run start” button allows
the user to let the panel start the next run automatically, when the current run terminates
normally after reaching the output file size limit. The “mark run” button produces a pop-up
window allowing the user to stamp a problematic or special run and to provide some details in
support of that decision. The “trigger” button produces a pop-up window for changing the
conditions of the global trigger or, per subsystem, the local trigger. The “unix tasks” button
produces a window allowing the user to restart any of the important data monitoring clients,
or send some command to it via the dispatcher, e.g. to save histograms on disk immediately
or to send the current plot to the printer. The panel starts most monitoring clients itself.
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The “quit” button allows the user to stop the panel process and the monitoring clients,
in principle without affecting the data-taking. Conversely, when the panel starts, it allows the
user to have it attach itself to a running DAQ, if any. In that case it asks the EVB and the
supervisor (see below) about the current parameters and statistics, and fills in the various
text fields accordingly.

Finally, the “evb status and control” section of the panel shows the current status
of the DAQ and allows the user to modify it. At any time most of the buttons are disabled,
to enforce a proper sequence of operations. In the example the DAQ is in the running state
and only the “stop trigger” button is enabled. When the user clicks on that button, the panel
highlights the “stopping” text field above the “stop trigger” button and sends the appropriate
command to the evb in process. The EVB then forwards the command to the subsystems.
After receiving their confirmations, it sends a message to the dispatcher, with tag “panel”
and as body the keyword “paused.” When the panel receives this message, it highlights the
“paused” text field, disables the “stop trigger” button, and enables the “start trigger” and
“stop run” buttons. When the “stop run” button is clicked, the panel ends up in the “ready”
state in a similar way, with only the “start run” and “stop DAQ” buttons enabled. Clicking
on “stop DAQ” leads to the “off” state, with only the “start DAQ” button enabled. The
procedure to start the DAQ is a bit more complicated, since there is no well-behaved DAQ yet
to communicate with.

Starting the DAQ
The first step in starting the DAQ is to reboot all participating FIC-8234 boards, resetting

their operating system, server processes and memories to well-defined states. For a global DAQ
this procedure takes advantage of the VICbus connection between the EVB and each subsystem.
Each FIC-8234 has been configured to reboot itself when either its front-panel reset button
is pushed, or an internal reset register is written to, or the VME sys-reset line is pulled.
Furthermore, a front-panel or register reset leads to a VME sys-reset as well. The VIC-8251
master modules in the EVB crate and in the subsystem crates have been configured to convert
the VME sys-reset into a VICbus sys-reset. The VIC-8251 slave modules in the subsystem
crates have been configured to convert the VICbus sys-reset into a VME sys-reset. These
configurations allow all participating subsystems to be rebooted automatically and all readout
crates to be reset whenever the EVB FIC-8234 is reset. As a by-product it also inhibits the
UNIX back-end CETIA PowerEngine board from being in the EVB crate (see Sect. 9): not
only would a VME sys-reset crash the DAQ back-end, but also it could lead to file system
corruption. Unfortunately the board could not be shielded from the VME sys-reset line. All
the UNIX hosts and their disks, for that matter, were powered from uninterruptible power
supplies.

When OS-9 and the relevant server processes are running properly, a FIC-8234 can be
reset by launching a remote shell command that writes the appropriate value to the internal
reset register. Otherwise the user must push the front-panel button. These are the alternatives
for a stand-alone DAQ. For the global DAQ a superior approach was introduced in the course
of 1996: a true VME sys-reset could now be generated via the CAENET [18] bus, driven by
a CAEN A200 SY127 controller [18] operated by a program running on the UNIX back-end
CETIA PowerEngine board (see the CAENET link in Fig. 2). This allows the EVB and all
participating subsystems to be rebooted by the panel without further user intervention. This
procedure usually worked fine, but occasionally some subsystem crate would mysteriously fail
to get fully reset. The ultimate cure for such a problem was a power cycle of the crate in
question.
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Each participating FIC-8234 downloads a file from the UNIX file server, containing the
OS-9 kernel and a number of important server and utility programs, one of which is started by
OS-9 as the last step of the reboot. This program initializes the networking, mounts the OS-9
file system from the UNIX file server through NFS, executes a start-up shell script located on
that file system, and executes in an endless loop a login program on the serial terminal port. To
allow the panel to monitor the progress of the reboot, the start-up script invokes at specific
steps a command which sends a message with tag “panel” to the dispatcher. The name of
the dispatcher host is found in a configuration file prepared by the panel. The body of each
message contains the name of the subsystem and the current phase of its boot procedure. The
panel expects to see the phases “booted,” “vic-configured” and “remos-configured,”
after which the subsystem should be ready for the DAQ to be started.

When all participating subsystems have thus rebooted, the panel launches via the remote
shell daemon on the EVB FIC-8234 a script that in turn starts the EVB processes participating
in the DAQ (see Sect. 6). It then waits for the evb main process to send a message to the
dispatcher with tag “panel” and body “evb-ready.” The panel then checks itself if the
other EVB processes are present, by launching a remote shell command on the EVB FIC-8234 to
list the running processes. In principle the dispatcher could have been used here, at the cost of
additional modifications in the OS-9 programs. Next the panel communicates via the evb in
process the list of participating subsystems to evb main, which then launches on each of them
the relevant DAQ processes, through a remote shell connection. Each subs main process is
supposed to put a confirmation message into the EVB input queue, as soon as subs cirq and
any other dependent processes have registered themselves with subs main. When the EVB has
thus received all confirmations, it sends another message to the dispatcher, with tag “panel”
and body “ready,” which leads the panel into its own “ready” state, allowing the user to
start a run etc. In a stand-alone DAQ the subsystem DAQ processes are launched in parallel
with the EVB processes, all on the subsystem FIC-8234, but the confirmation procedures are
the same.

The Supervisor
Now that the DAQ is up, a run can be started. It is here that the supervisor comes

into play. The supervisor is a daemon process started on each of the UNIX hosts when it is
rebooted. Whenever the supervisor fails, the panel allows the user to restart the process.
It is the supervisor who controls the data recording and saving on the UNIX side of the
DAQ. When the user clicks the “start run” button, the panel pops up a window allowing the
user to select the type of the run and its output stream. A “test” run would usually not be
recorded, but only used for sending data via the dispatcher to monitoring tasks, to observe
the behavior of subdetectors. A “real” run would originally be recorded by the evb write OS-
9 process, on a tape drive attached to the EVB or subsystem FIC-8234, or on a disk mounted
from the file server through NFS. With the supervisor three new options became available:
“remote disk,” “remote tape” and “remote stage.” The first option selects the recording by the
diskwriter client, and is a prerequisite for the other two. The option “remote tape” instructs
the supervisor to have a backup copy of the run written to a 10 GB DLT drive attached to
the UNIX host. The option “remote stage” instructs the supervisor to have the run copied
through an FDDI link to the CERN central stage pool in the computer center. There the run
is split into various streams corresponding to selected trigger types, and each of those streams
as well as the entire run are saved on tapes managed by the computer center. Furthermore
a program is run to obtain a measure of the data quality, and its results are copied to the
DAQ file server and made available in the online monitor archive (see Sect. 11). For normal
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data-taking all three supervisor options are enabled and none of the OS-9 options.
When the user has selected the output streams, the panel informs the supervisor

through the dispatcher. If requested, the supervisor then starts the diskwriter when
necessary, and instructs it to record the event data (in ZEBRA [20] format). Upon receipt of a
confirmation message from the diskwriter, the supervisor informs the panel, which then
proceeds by broadcasting to the dispatcher clients that a new run is about to start, and by
sending a start command to the EVB, indicating the run number and the local output stream,
if any. The panel then expects a message from the EVB that it has reached its “paused” state,
indicating that all subsystems have obtained their calibration data, if any, and are ready for
triggers. The panel then sends a “start trigger” command and expects the EVB to confirm
that it has entered the “running” state.

During the run the panel instructs the monitoring tasks every 10 minutes to save their
histograms, such that they can be viewed in the online monitoring archive (see Sect. 11). It
also expects a message from the EVB every minute, confirming that the OS-9 processes are
functioning well. Other messages from the EVB report e.g. the number of events triggered
or the number of megabytes sent to the dispatcher. Finally it expects the supervisor to
respond every minute, indicating that the data recording proceeds correctly.

A run is stopped either by the user through the panel, or by the supervisor through the
panel, or by the EVB itself. The EVB would stop the run either when one of the subsystems
fails, or when the local output file, if any, reaches its size limit (∼200 MB, determined by the
capacity of an IBM 3480 tape). The supervisor instructs the panel to stop the run either
when the diskwriter fails, or when its output file reaches the size limit (200–800 MB). A
normal run lasts between 1.5 and 6 hours. During normal data-taking the next run is started
automatically by the panel, when the “automatic run start” button has been selected and
the current run has terminated normally. In any case the supervisor has to launch commands
that copy the run, when requested, to the DLT drive and the remote stage area.

The supervisor has been written in the Expect [19] programming language. This exten-
sion of Tcl [17] allows multiple processes to be controlled, which are connected to the supervi-
sor through pseudo terminals. These processes include the diskwriter, the copy commands,
a logger for control and status messages, and a process managing a database holding the status
of each run. Since almost all their messages are only of interest to the supervisor itself, using
pseudo terminals avoids cluttering the dispatcher. Furthermore, when the output stream is
a pseudo terminal, any UNIX utility only buffers its output up to a line, such that messages
are immediately available to the supervisor. This allows e.g. the copy commands to be imple-
mented as ordinary shell scripts. Whenever the supervisor is restarted, through the database
it can find out if a run still needs to be copied. When all copies have been made, a run is
marked for removal. Whenever the disk occupancy exceeds a threshold, the oldest marked run
is removed. Since the main dispatcher host and its backup machine each have about 18 GB
available for event data, and the rate is about 100 MB per hour, unmarked runs can be allowed
to accumulate for more than a week. Occasionally runs remained unmarked up to a few days,
due to the remote stage area filling up. The user can control the supervisor through the
dispatcher by means of a GUI written in Tcl/Tk (see Sect. 11).

The 1998 Run
The main data-taking of the CHORUS experiment has taken place in the years 1994–

1997. The data recorded during this period are used in the search for the neutrino oscillation
phenomenon. In 1998 the experimental setup has been used to collect data for other analyses.
To use the available manpower efficiently, the experiment has been run without shifts for the
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larger part of that last year. Fortunately the OPTO subsystem could be excluded from the
DAQ most of the time, so that significantly fewer crashes were expected. A run coordinator
and various experts checked the status of the subdetectors and the data-taking a few times
per day. To increase the efficiency of this largely unattended operation, the panel has been
modified to play a more active role. Firstly, when this option is selected, the panel restarts
the DAQ automatically after a crash, unless too many restarts have taken place in a short
time, which points to a permanent problem, e.g. a VME crate fan failure. In such cases human
intervention is needed, and by means of a modem the panel leaves a small numeric message
on the pager of the relevant expert. Similarly the panel will start the next run whenever it
finds itself in the “ready” state.

Experience with the data-taking in the preceding years allowed a list to be compiled of
certain warnings and error messages indicating that data of dubious quality are being recorded.
The panel counts such messages and whenever too many are received in a short time, it restarts
the DAQ, which usually cures the problem, as all readout crates are reset. An important error
is the mismatch of event tags (see Sect. 6) among the subsystems. Such an error would point to
the loss of synchronization in one of the subsystems. However, occasionally a single event was
observed to have a bad event tag in one of the subsystems, whereas the next event would be fine.
This might be ascribed to noise in the hardware, or to a coding error in the subsystem DAQ. In
any case it would be counterproductive to restart the DAQ immediately, unless such complaints
are reported in a continuous stream. Event tag mismatches and other problems with the event
data structure are reported by the evb write OS-9 process and by the equipment check
client of the dispatcher (see Sect. 11). Another important complaint would come from the
trig cirq OS-9 process, when a subsystem is not ready to take global events. Finally, quite
infrequently the evb dsp OS-9 process would complain that the dispatcher no longer ac-
cepted large event messages. This could sometimes be cured by pausing the run temporarily,
thus allowing the clients to decrease the backlog. At other times the cause was a bug in the
UNIX operating system itself. In that case also the supervisor would fail and an expert was
paged immediately, to reboot the dispatcher host, restart the panel, and recommence the
data-taking.

All in all the DAQ efficiency has been higher than 99 % even when it was running
unattended, but controlled by the panel.

11 Monitoring Tasks and Utilities
During and after periods of data-taking various tasks and utilities are run on the UNIX

back-end to monitor the behavior of subdetectors, of the neutrino beam, and of the DAQ
itself. Almost all these programs are clients of the dispatcher and have been written in C++,
C or Fortran-77. Most of them have graphical user interfaces (GUIs), implemented in the
Tcl/Tk [17] programming language or using the CERNLIB HPLOT/HIGZ [20] library. Many
of these programs are launched automatically by the panel. Here we describe those tasks and
utilities that are important in ensuring that data of good quality are being recorded.

• file logger – This process is started on each UNIX host at boot time. It immediately
connects to the dispatcher and logs all interesting control and status messages from
any DAQ related process into a file, whose name reflects the current run number, or the
current day when no run is being taken. After a week each file is compressed, but kept
available for inspection, if ever necessary.

• screen logger – This process is started by the panel and shows in a scrolling window
on the screen the control and status messages currently being sent.
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Figure 7: The CHORUS Honeycomb subdetector monitor. Besides drift time spectra, pulse
length spectra and hit distributions the window also displays a snapshot event in a framework
representing the subdetector’s three modules, each having two rows of nine readout cards. Each
wire with a signal is represented by a dot. Track segments can be distinguished.

• error logger – This process is also started by the panel and keeps a list of the last
1000 warnings and error messages sent to the dispatcher. When the user clicks on
one of the subsystem “info” buttons in the panel (see Sect. 10), the error logger is
instructed by the panel to pop up a scrolling window containing all the kept messages
pertaining to the subsystem. New messages are added to the window as they are received
by the error logger.

• logbook – This utility is not a dispatcher client. It is started by the user to create or
retrieve descriptions of the data-taking conditions, of problems with the subdetectors or
the DAQ, and of actions taken. Its database is also updated by the panel with a short
summary for each completed run.

• equipment check – This process checks the structure and internal consistency of the
data banks for each event it receives. Anomalies are reported as error messages to the
dispatcher.

• subs hist, subs auto hist – Each of the four subsystems “subs” has a correspond-
ing subs hist task to calculate from the event data various distributions that serve in
monitoring the performance of subdetectors. A histogram class library was written for
the C++ clients, including an interface to the HBOOK [20] histogram format used by
CERNLIB [20] utility programs and by the Fortran-77 clients. Every few minutes selected
histograms are sent to the corresponding subs auto hist task, which subsequently up-
dates its display window on one of the workstation screens. All histograms are saved in
an archive on disk, on command from the panel, sent every 10 minutes and at the end of
a run. As an example Fig. 7 shows a window with data distributions of the Honeycomb
subdetector [6].

• online monitor – This utility is not a dispatcher client. It serves to view the archive
of histograms created e.g. by the subs hist processes.

• event display – This process shows the hits and reconstructed tracks of snapshot events
in a model picture of the complete CHORUS detector. Fig. 8 is an example.
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Figure 8: The CHORUS event display. The window shows the top and side views of the hits
and tracks, superimposed on representations of the trigger planes and the heavy elements in
the CHORUS setup: the four emulsion stacks, the hexagonal magnet, the three calorimeter
modules, and the six spectrometer magnets. The top view includes the veto planes upstream of
the target, the side view includes those trigger planes that have horizontal elements. The right
edge of the picture shows which trigger bits are set for this event.

• chorus efficiency – This process reconstructs tracks to obtain estimates of the ef-
ficiencies of the subdetectors. Since a proper calibration of the subdetectors can only
be done off-line, this process can only approximate the true efficiencies. The results are
recorded in histograms that are archived at regular intervals and can be viewed with the
online monitor.

• trigger rates, trigger dead times – These processes update windows showing the
rates and associated dead-time percentages for various trigger types, as well as the timing
and structure of each neutrino burst, from information obtained by recording the corre-
sponding muon flux in the muon pits upstream of the experiment. An example is given
in Fig. 9. The run summaries of these processes are archived.

• archives – A utility for browsing archives of summaries from various monitoring tasks.

• remote recording – This process communicates with the supervisor and updates
a window with the status of each unmarked run, i.e. a run that has not yet been fully
saved. The user can also control the supervisor with it. For example, whenever there
was a persistent problem with copying runs to the DLT drive or to the computer center,
the corresponding part of the supervisor would “trip” and stop trying the operation.
After correcting the problem a user could “reset the trip” via the GUI.
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Trigger Dead Times

Figure 9: The neutrino burst timing and structure. The shaded rectangle containing the burst
represents the physics gate. The fraction of the burst lost due to dead-time is shown upside
down below the zero line. The picture also displays measurements of the currents in the Horn
and the Reflector, two crucial magnets in the neutrino beam line: their currents rise steeply just
before the physics gate and fall steeply just after it. The remaining curves display measurements
of the magnetic field in the hexagonal magnet: it rises slowly before the physics gate and falls
slowly after it.

The Slow Control
Closely related to the DAQ is the “slow control” system [21], which monitors hard-

ware parameters that may change during data-taking. These parameters include the low and
high voltages of the subdetectors and their readout hardware, temperatures, gas flows etc. The
system only allows for monitoring the parameters; subsystem experts use specialized programs
when parameters must be modified, after which the slow control database is updated ac-
cordingly. For the low-level acquisition of parameter values a FIC-8234 is used running OS-9.
The slow control crate contains various VME-based monitoring modules, like CAENET [18]
high voltage controllers, which are read out directly. There is also a G-64 [22] crate housing a
CERN-built monitoring system previously used in the CHARM II experiment [24]. That sys-
tem is based on voltage-to-frequency converters and pulse counters. Besides G-64 I/O modules
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the crate contains a CERN-built VME 3U adapter casing, which holds an MC-68020 based
processor board and an Ethernet card [23]. Also this processor boots OS-9 from the file server.
The UNIX high-level part of the slow control then starts a process on the G-64 host to deal
with reading the G-64 I/O modules, under control of the similarly started process running on
the FIC-8234. The dispatcher on the file server is used to pass control commands and status
information between the three parties, and to send the measured values to the UNIX client,
which records the status of all the 4589 monitored channels every two minutes, and updates
its display with an alarm indication whenever a channel’s value lies outside its allowed range.
The history of all channels is archived on disk, and the client allows easy viewing of trend plots
which go back up to a month.

An optical alignment monitoring system, RASNIK [25], was introduced with the Honey-
comb subdetector in 1996. The alignment data are collected and first processed by a dedicated
PC (“rasnik” in Fig. 2), which then transfers the results through FTP to the DAQ file server,
where they are further processed and archived. The slow control expects to receive a status
message at regular intervals, indicating that all is well with the alignment data, otherwise it
displays an alarm for the RASNIK. Similarly the slow control itself has to send a message
to the panel at regular intervals, otherwise the latter would change the color of its “slow
control” “status light” from green to red (see Sect. 10), indicating a potentially serious
problem.

For the 1998 run (see Sect. 10) the slow control has been modified to play an active
role. First, each channel was assigned a level of importance. Then, whenever for a period of 15
minutes the consecutive readings of some unreported channel were all lying outside its allowed
range, a small numeric message would be sent to the pager of the corresponding subsystem
expert. The message gave the number of bad channels and the highest level of importance among
them. This allowed the expert to judge what delay would be permissible before coming in to
fix the problem. The 15 minute accumulation period served to filter out occasional misreadings
caused by the slow control hardware itself.

The Beam
For precise measurements of the neutrino beam flux and structure, data are collected from

detectors operated by the SPS West Area Neutrino Facility group, who use a DAQ system con-
trolled by the commercial product FactoryLink [26]. A workstation (“wanf” in Fig. 2) running
a graphical interface to FactoryLink updates various histograms and profiles, providing monitor-
ing facilities for the neutrino beam performance. An RPC server makes the recorded beam data
available to the CHORUS beam histogram task, which archives the data for analysis purposes
and calculates various distributions, which can be viewed through the online monitor.
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12 Conclusions
We have described the Data Acquisition system used in the CHORUS experiment in

the years 1994–1998. The performance of the DAQ has been satisfactory with an efficiency of
more than 99 %. The DAQ has turned out to be versatile, in part due to its novel implemen-
tation of important concepts, including: a remote operating system (REMOS), a finite state
machine language (CHSM), a buffer manager, a dispatcher, a control panel and a supervisor.
The descriptions of these concepts and of their interplay may serve in the design of new data
acquisition systems.
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