93 research outputs found

    Analyses of the stress field in southeastern France from earthquake focal mechanisms

    Get PDF
    Due to the apparent deformation field heterogeneity, the stress regimes around the Provence block, from the fronts of the Massif Central and Alpine range up to the Ligurian Sea, were not well defined. To improve the understanding of the SE France stress field, we determine new earthquake focal mechanisms and we compute the present-day stress states by inversion of the 89 available focal mechanisms around the Provence domain, including the 17 new ones calculated in the current study. This study provides evidence of 6 different deformation domains around the Provence block with different tectonic regimes. On a regional scale, we identify three zones characterised by significantly different stress regimes: a western one affected by an extensional stress (normal faulting) regime, a southeastern one characterised by a compressional stress (reverse to strike-slip faulting) regime with NNW- to WNW-trending σ1 and a northeastern one, i.e., the Digne nappe front, marked by an NE-trending compression. Note that the Digne nappe back domain is controlled by an extensional regime that is deforming the western alpine core. This extensional regime could be a response to buoyancy forces related to the Alpine high topography. The stress regimes in the southeast of the Argentera Massif and around the Durance fault are consistent with a coherent NNW-trending σ1 that implies a left-lateral component of the active reverse oblique-slip of the Moyenne Durance Fault. In the Rhone Valley, an E-trending extension characterises the tectonic regime that implies a normal component of the present-day Nîmes fault displacement. This study provides evidence for short-scale variation of the stress states that reflect abrupt change in the boundary force influences on upper crustal fragments (blocks). These spatial stress changes around the Provence block result from the coeval influence of forces applied at both its extremities, i.e., in the north-east, the Alpine front push and in the southeast, the northward African plate drift. Besides these boundary forces, the influence of the mantle plume under the Massif Central can be superimposed along the western block boundary

    Comparative morphology of the forewing base articulationin Sternorrhyncha compared with a representative of Fulgoromorpha (Insecta, Hemiptera)

    Get PDF
    The forewing articulation of single species from each of the four subgroups of Sternorrhyncha (Aleyrodomorpha, Aphidomorpha, Coccomorpha, Psyllomorpha) was examined by optical and scanning electron microscopy. The species were compared with a species of Cixiidae (Fulgoromorpha), as an outgroup of Sternorrhyncha. We present the results of a comparative analysis of the forewing articulation in these five groups, propose a standardized terminology and compare our findings with those previously reported. The wing base of all examined species is composed of the following structures: anterior and posterior notal wing process, first, second, and third axillary sclerites, tegula, and axillary cord. The number of elements included in the wing base and the surrounding area is the greatest in Cacopsylla mali, the most complicated species from Sternorrhyncha. Based on the shape of axillary sclerites and the number of elements forming the wing base environment, Orthezia urticae (Coccomorpha) and Cixius nervosus (Fulgoromorpha) are the most similar. Among Sternorrhyncha, the most similar axillaries are those of Aphis fabae and Orthezia urticae, which is congruent with existing classifications. In this paper we show that the four groups from Sternorrhyncha exhibit their own distinct wing base morphology

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    A unique, large-sized stem Odonata (Insecta) found in the early Pennsylvanian of New Brunswick (Canada)

    Get PDF
    A stem relative of dragon- and damselflies, Brunellopteron norradi Béthoux, Deregnaucourt and Norrad gen. et sp. nov., is documented based on a specimen found at Robertson Point (Grand Lake, New Brunswick, Canada; Sunbury Creek Formation; early Moscovian, Pennsylvanian) and preserving the basal half of a hindwing. A comparative analysis of the evolution of wing venation in early odonates demonstrates that it belongs to a still poorly documented subset of species. Specifically, it displays a MP + CuA fusion, a CuA + CuP fusion, and a CuP + AA fusion, but it lacks the “extended” MP + Cu / CuA fusion and the “extended” (CuP / CuA + CuP) + AA fusion, the occurrence of which is typical of most Odonata, including Meganeura-like species. The occurrence of intercalary veins suggests that its closest relative might be Gallotypus oudardi Nel, Garrouste and Roques, 2008, from the Moscovian of northern France.</p

    Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin

    Get PDF
    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m2 after trawling and integrating between 30,000 and 175,000 m2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems

    Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    Get PDF
    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well
    corecore