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Summary 

Due to the apparent deformation field heterogeneity, the stress regimes around the 

Provence block, from the fronts of the Massif Central and Alpine range up to the Ligurian 

Sea, were not well defined. To improve the understanding of the SE France stress field, we 

determine new earthquake focal mechanisms and we compute the present-day stress states by 

inversion of the 89 available focal mechanisms around the Provence domain, including the 17 

new ones calculated in the current study. This study provides evidence of 6 different 

deformation domains around the Provence block with different tectonic regimes. On a 

regional scale, we identify three zones characterised by significantly different stress regimes: 

a western one affected by an extensional stress (normal faulting) regime, a southeastern one 

characterised by a compressional stress (reverse to strike-slip faulting) regime with NNW- to 

WNW-trending σ1 and a northeastern one, i.e., the Digne nappe front, marked by an NE-

trending compression. Note that the Digne nappe back domain is controlled by an extensional 

regime that is deforming the western alpine core. This extensional regime could be a response 

to buoyancy forces related to the Alpine high topography. The stress regimes in the southeast 

of the Argentera Massif and around the Durance fault are consistent with a coherent NNW-
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trending σ1 that implies a left-lateral component of the active reverse oblique-slip of the 

Moyenne Durance Fault. In the Rhone Valley, an E-trending extension characterises the 

tectonic regime that implies a normal component of the present-day Nîmes fault 

displacement. 

This study provides evidence for short-scale variation of the stress states that reflect 

abrupt change in the boundary force influences on upper crustal fragments (blocks). These 

spatial stress changes around the Provence block result from the coeval influence of forces 

applied at both its extremities, i.e., in the north-east, the Alpine front push and in the 

southeast, the northward African plate drift. Besides these boundary forces, the influence of 

the mantle plume under the Massif Central can be superimposed along the western block 

boundary. 

 

Key Words: Southeastern France, focal mechanisms, seismotectonics, stress field. 

 

I - Introduction 

 

In the Southeastern France domain, geomorphic and tectonic analyses provide 

evidence for localised deformation along individual fault zones like the Nîmes and Moyenne 

Durance faults, and the Digne and Castellane nappes (e.g., Combes 1984; Ritz 1991) (Fig. 1). 

The Nîmes and Moyenne Durance faults are seismically active on three time scales: by 

paleoseismicity, historical seismicity and instrumental seismicity. The Moyenne Durance 

Fault is probably the most active fault in the studied zone. It is characterised by four 

historical earthquakes (MSK Intensity > VII) since 1509 (Levret et al. 1994) and by a 

paleoseismic event which produced more than 1 m reverse faulting displacement, between 

27.000 BP and 9.000 BP (Sébrier et al. 1997). Paradoxically, the regional instrumental 

seismicity is low while geodetic results imply that the present-day total left-lateral strike-slip 

rates on both the Moyenne Durance and Nîmes faults is unlikely to exceed 2 mm/yr (Ferhat 

et al. 1998). In addition, a previous analysis of focal mechanisms for France (Nicolas et al. 

1990) provided evidence for heterogeneous deformations in SE France. In this region the 

computed focal mechanisms were sparse and poorly defined due to the low-density of 

seismic stations. Through inversion of focal mechanisms, Delouis et al. (1993) determined 

the stress field in different French domains. For the southwestern Alps and Provence, the 

stress state has not been computed due to both, the lack of seismic events, and the 
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heterogeneous deformation related to the rapid spatial variation of the stress field. However, 

thanks to the increasing development of seismic networks in France, the seismicity imaging 

of SE France can now be improved. The aim of this paper is to analyse the SE France stress 

field, i.e., mainly around the Provence domain, from the fronts of the Massif Central and 

Alpine range up to the Ligurian Sea. For this objective, we have determined new earthquake 

focal mechanisms and we have computed the present-day stress states by inversion of the 89 

available focal mechanisms around this Provence domain. 

 

II - The seismological data 

 

A- The seismological network 

Nowadays, dense networks distributed throughout France monitor the seismicity of 

southeastern France. Fig. 2 displays the location of the stations used for this study. They have 

come into operation progressively over time. Most of the LDG* stations were installed nearly 

forty years ago, and the ReNaSS* network of Nice and Provence in 1983, whereas the stations 

of the Massif Central and Pyrenees mountain ranges were installed between 1983 and 1998. 

The Durance valley network, installed by the IPSN* with 13 stations, has been progressively 

operated since 1993. We also benefit from all the data available from the IGG* network and 

some data recorded by the SISMALP* network for events between 1993 and 1998. 

Consequently, the focal solution is best defined for the more recent events, because the 

solution accuracy is directly linked to the number of data available, the network geometry and 

the source-stations distance. Nevertheless we could compute focal mechanisms for events 

which occurred since 1980. For the oldest events, the available data allowed the determination 

of the mechanism types (normal, thrusting or strike-slip faulting) and the approximate trend 

for the P and T axes. The lack of seismicity recorded in the last few years led us to take into 

account also poorly defined solutions, which will be considered to be less confident than the 

others. 

 

                                                
* LDG: Laboratoire de Détection et Géophysique, Bryères-le-Chatel, France - ReNaSS: Réseau National de 
Surveillance Sismique, Strasbourg, France - IPSN : Institut de Protection et de Sureté Nucléaire, Fontenay-aux-
Roses, France. IGG: Istituto Geofisico e Geodetico, presently Istittuto di Scienze della Terra, Genova, Italy - 
SISMALP : Réseau de Surveillance de la Sismicité Alpine, Grenoble, France. 
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B - Location procedure and computation of the take-off angles. 

All the earthquakes of southeastern France, which occurred between 1962 and 1992, 

were located and studied using a code written to take into account secondary arrivals and 

different crustal models according to the area of the epicentre (see details in Nicolas et al. 

1998). In order to obtain a file with the take-off angles, we re-located these events using Hypo 

71 software (Lee & Lahr 1975), with the same crustal model and event depths as in the 

previous study, using secondary arrivals. For the most recent events, the availability of nearby 

stations permitted a reliable hypocentral location. Moreover, some earthquakes with 

epicentral distance less than twice the focal depth warrant this location quality. For the others, 

the location accuracy was evaluated using the location of rock bursts of a coal mine located 

just in the south of the Durance valley (Gardanne mine, Fig. 2). Nicolas et al. (1998) 

estimated the accuracy of about +/- 1 km for the epicentral parameters and 5 km for the depth, 

for events after 1983, when there was an increase of the seismic network density. The 

magnitude range of the 54 compiled events is 2.9 to 4.7 (Ml magnitude computed by the LDG 

network), but the average magnitude is around 3.0. In this paper, we examine only the 17 

events with the most stable focal mechanisms. Their magnitudes range from 3.0 to 4.7. The 

location of these events, with focal mechanisms, is reported in Table 1 and displayed on Fig. 

1. 

 

C - New Earthquake fault-plane solutions 

Reliable focal mechanisms have been computed in two steps. First, the nodal planes 

were graphically determined by displaying the seismic rays with the corresponding polarity 

on a stereogram, using a code added to Hypo71 software. Second, the focal mechanisms were 

computed by means of the FPFIT code (Reasenberg & Oppenheimer 1985) which 

systematically searches the solution space for the double couple fault plane solutions that best 

fit, in a least-squares sense, a given set of observed first motion polarities. This method may 

determine several solutions with related uncertainties for both nodal planes. The final step of 

this methodology is to verify that the previously graphically-determined solution is close to 

one of the solutions provided by the FPFIT code. Generally, the automatic FPFIT research 

includes the graphically-determined solution among the multiple solutions and for the best-

constrained mechanisms only one solution is obtained by both methods. Nevertheless, in two 

cases, we chose the graphical solution (Fig. 3). For the event n5 (880805) our graphical 

solution is very close to one of the multiple solution computed by FPFIT code. However, we 



 5 

select the graphical solution because it is in better agreement with the local geology. The 

second case corresponds to the magnitude 3.6 event n15 (971106). This earthquake and the 

magnitude 4.7 event n14 (971031) are located around the town of Allos, in the northeastern 

part of the studied region . These earthquakes were analysed by Sue et al. (1999) in parallel 

with our study. These authors computed the focal solution with only the SISMALP network, 

with stations very close to the epicentres; we studied the same events with the other networks. 

For our own set of data, FPFIT provided only one solution that corresponds to a pure inverse 

mechanism, whereas our graphical solution was a transpressional mechanism (see Fig. 3). 

This solution is very close to the solution recently published by Sue et al. (1999) that has been 

obtained with a dense local network. Conversely, for the n14 event, we kept the FPFIT 

solution because it provides a similar tectonic result than the solution of Sue et al. (1999), i.e., 

same fault kinematics, and it is in good agreement with our n15 solution (see Fig. 1). 

Consequently, both methods (graphical method and FPFIT code) are complementary 

and help in the selection of a reliable focal mechanism in case of multiple focal solutions. 

In the current study we have determined 17 new earthquake focal mechanisms of 

which we report the selected solutions in Table 1 and on Fig. 1. The detailed solutions are 

reported in Fig. 4.  
 

D - The bibliographic focal mechanisms. 

Focal mechanisms from other events which occurred in the studied region have 

already been determined by different authors (Bossolasco et al. 1972; Fréchet & Pavoni 1979; 

Béthoux et al. 1988; Nicolas et al. 1990; Deverchère et al. 1991; Béthoux et al. 1992; 

Madeddu et al. 1996; Eva & Solarino 1998; Sue 1998; Sue et al. 1999; Volant et al. 2000). 

The parameters of these focal mechanisms are reported in Table 2, while Fig. 5 presents a 

map showing the available focal mechanisms including the new solutions determined in this 

study. 

Volant et al. (2000) propose three different solutions corresponding to three different 

hypocenter depths, for each of the two events that occurred along the Durance Fault Zone 

since 1996 (event 961007 and 970208).  

We have computed a new focal solution for the event 870509 that has been previously 

analysed by Béthoux et al. (1988) because Nicolas et al. (1998) revised its location. The 

location change implies a change in the focal solution, this new one being more coherent with 

neighbouring earthquake focal solutions. We did the same operation for the 890212 event, 
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studied previously by Madeddu et al. (1996). In that case we obtained a solution similar to the 

previous one. 

In the northeastern part of the studied region, the magnitude 4.7 event n14 (971031) 

and magnitude 3.6 event n15 (971106) are located around the town of Allos. These 

earthquakes were analysed by Sue (1998, Sue et al. 1999) in parallel with our study. This 

author computed the focal solution with only the SISMALP network, with stations very close 

to the epicentres; we studied the same events with all the other networks without the 

SISMALP data. We propose one focal mechanism given by FPFIT (see Fig. 3), nevertheless 

the solution computed by Sue, that has been obtained with the SISMALP dense local 

network, agrees with our set of polarities and provides a similar tectonic result, i.e., same fault 

kinematics. 

 

III - Inversion of seismic slip-vector dataset to determine the stress state 

A - Methodology 

To compute the stress states responsible for present-day activity (i.e., for earthquakes) 

in the studied area, we performed quantitative inversions of the earthquake focal 

mechanisms, using the method proposed by Carey-Gailhardis & Mercier (1987, 1992) which 

is one of several existing algorithms (e.g., Vasseur et al. 1983; Gephart & Forsyth 1984). For 

a robust dataset these different algorithms yield similar results (Mercier et al. 1991). In 

appendix A, we succinctly explain the methodology we used to compute the stress states 

from earthquake focal mechanisms (for more details see Carey-Gailhardis & Mercier 1987, 

1992). We complement this appendix explaining how we measured the uncertainties in the 

preferred direction of the stress state. 

 

B - Results 

 

In the current study we analysed 89 events including the bibliographic and the new 

focal mechanisms (Tables 1 and 2). However, twenty-five focal mechanisms are not reliable 

enough to be included in the computed inversions. These are mainly after-shocks, low 

magnitude events, ill-defined focal mechanisms or solutions from previous studies (870509, 

890212, 971031 and 971106). Results of the earthquake slip datum inversion are given in 

Table 3 with the computed uncertainties for each σ axis and shown with stereoplots on Fig. 6 
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zone by zone. Histograms showed also the focal depth repartition for each zone. The 

computed σ1 and/or σ3 orientations are shown in map view on Fig. 7 and are discussed below 

by stress regime and locality. Moreover, in some zones, the focal mechanisms are in 

agreement with the regional or local tectonic regime but we have not enough events to 

constrain an inversion. For example, the event n11 (941124), showing an E-striking pure 

reverse fault and located on the Castellane Thrust, confirms the hypothesis of the southward 

progression of the Castellane nappe controlled by the Maures Massif position (Ritz 1991). 

The results permit us to identify six different tectonic domains, i.e., stress regime zones 

characterised by a homogeneous deformation field (Fig. 6 and 7), these zones are well 

defined in term of stress regime (homogeneous stress state) but the boundaries are not well 

constrained due to the earthquake epicentre location uncertainty. These identified tectonic 

domains are: 

-The Rhone Valley (zone A). 

-The Moyenne Durance Fault Zone (zone B). 

- A reverse faulting domain north of the Digne nappe (zone C). 

- A normal faulting domain north of the Digne nappe (zone D). 

- The zone south-east of the Argentera Massif (zone E). 

- The Ligurian basin (zone F). 

 

Zone A: The Rhone Valley 

In Zone A we compiled four bibliographic and two new mechanisms (see Tables 1 & 2 

for references). This small number of focal mechanisms is due (1) to a seismicity gap in the 

region, and (2) to a lack of stations in the Rhone Valley. However, the inversion of these 6 

mechanisms is relatively well-constrained and the result is stable. It is a high quality 

inversion (100% of (τ , s) angular deviations are lower than 20°, and the confidence cone 

angle of the of the σ3 axis do not exceed 20° - see Fig. 6 and Table 3). The inversion result 

indicates a normal faulting stress regime (σ1 vertical) with an E-trending σ3 axis (σ3: 

N270°E). We notice that event 16, (840219) of Ml=4.3, is located around Gardanne, east of 

the Durance Fault, but it is coherent with the regional Rhone Valley stress regime (see the 

zone A inversion on Fig. 6 and Fig. 7). 

 

Zone B: The Moyenne Durance Fault Zone 

Only 5 earthquakes have been compiled along and around this fault zone (including a 

new one on the margin of the Mediterranean Sea). Nevertheless, they are very consistent with 
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a NNW compression. Inversion of these 5 events provides a high quality result (the 

confidence cone angle around σ axis is of about 10° - see Table 3) that yields a reverse 

faulting stress state (σ3 vertical) characterised by a N158°E-trending σ1 axis.  

 

Zone C: The Digne Nappe reverse faulting domain 

In this zone, corresponding to the Digne and Castellane thrusts, we compiled 12 

earthquakes with 5 new solutions. Inversion of these solutions permits us to determine a 

reverse faulting stress regime with a N046°E-trending σ1 axis. All the preferred fault planes 

show an angular deviation between τ and s of less than 10°, indicating that the focal 

mechanisms are homogeneous and permitting us to compute a high quality inversion (see 

Table 3). 

 

Zone D: The Digne nappe normal faulting domain 

In this area within the Digne nappe, we compiled 14 coherent normal faulting focal 

solutions, consistent with an extensional tectonic regime. These events are mainly clustered 

in the northern central part of the Digne nappe. The well-defined inversion of these slip data 

provides a result corresponding to a normal faulting stress regime with a N102°E-trending σ3.  

 

Zone E: SE of the Argentera Massif 

We divided the earthquakes of the Ligurian zone into two groups. The first one 

corresponds to the "continental" focal mechanisms of the Ligurian margin, related to the 

deformation of the SE Argentera Massif. Focal mechanisms of earthquakes, which occur in 

this zone, are consistent with a strike-slip faulting stress regime (σ2 vertical). Inversion of 

these 13 solutions is well-constrained and permits us to characterise a strike-slip stress state 

with a N155°E-trending σ1 axis, and a confidence cone angle of about 5° (see Table 3). We 

note that this determined σ1 axis is similar to that in zone B, and the average focal depth in 

this zone is higher than in zone F (see Fig. 6).  

 

Zone F: The Ligurian Basin 

In this zone we compiled 14 focal mechanisms. They correspond to the earthquakes in 

the Ligurian Sea, except events 30 (861029) and 48 (910628) in a transitional zone with zone 

B. We can identify dip- to oblique-slip reverse and strike-slip faulting. The high quality 

inversion of these solutions (less than 5° - see Table 3) provides evidence for a reverse 
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faulting stress regime with a N115°E-trending σ1 axis. This is significantly different from the 

σ1 axis determined in zone E with an angular difference of 50°. 

 

IV - Discussion 

Eva & Solarino (1998) performed a compilation and an inversion from earthquake focal 

mechanisms within the Ligurian domain from the Argentera range to the Ligurian Sea. This 

inversion using the Gephart & Forsyth (1984) method gives a mean stress regime for this 

wide zone, with a stress ratio defining a reverse faulting stress state with an horizontal σ1 

direction of about N142°E. As mentioned above, for a robust dataset the Gephart & Forsyth 

(1984) and Carey (Carey-Gailhardis & Mercier 1987) methods yield similar results (see 

Mercier et al. 1991). However, the current analysis using Carey's inversion of the Ligurian 

domain earthquakes allow us to distinguish two sub-zones (Zones E and F) characterised by 

homogenous deformation, both zones being coherent with significantly different tectonic 

regimes. Inversion of the earthquakes located in the basin (zone F) gives a well-defined 

reverse faulting stress regime with a N115°E-trending σ1 axis, whereas, the earthquakes 

affecting the southeast of the Argentera Massif (zone E) are consistent with a strike-slip 

stress state with a σ1 axis oriented N155°E. In the Ligurian basin (zone F), the WNW-

trending σ1 does not agree with the N-trending convergence of the Africa plate (DeMets et al. 

1990, 1994). We can explain this phenomena either by: 1- a local effect of the lateral 

expulsion of the southwestern Alps along the Apulian indenter (Bethoux et al. 1992); or, 2- a 

reorientation of the maximum stress direction σ1 orthogonally to the major faults of the 

Ligurian Sea Margin, as already mentioned for deformation zones around the Mediterranean 

domain by Rebaï et al. (1992). Indeed, they notice a perturbation of the regional stress field 

close to major faults. 

The stress regimes in the southeast of the Argentera Massif (zone E) and around the 

Durance fault (zone B) are very consistent in direction of compression with coherent NNW-

trending σ1 (N155°E in zone E and N158°E in zone B). However, the deviators acting in both 

zones define different faulting stress regimes, i.e., a strike-slip-faulting regime and a reverse 

faulting regime, respectively. The stress state that we determine in zone B is consistent with 

the geologically determined regime deduced from inversion of striae affecting Pliocene 

deposits along the Moyenne Durance Fault (i.e., Valensole II Formation) (Baroux 2000, 

Baroux et al. 1999a, 1999b, Bellier et al. 1998). This implies a left-lateral component of the 

present-day reverse oblique-slip of the Moyenne Durance Fault confirmed by the focal 
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mechanisms determined by Volant et al. (2000) for the two last earthquakes affecting the 

fault domain. It does not agree with the present-day right-lateral component recently 

postulated by Hippolyte (1999) on the basis of a local microtectonic observation. 

Major changes in the orientation of the stress axes are determined for very narrow 

zones, i.e., variation of the stress axes on short distance (zones B (B & E), C, D and A). The 

maximum stress axis of zones B & E (N155°E & 158°E) is in agreement with the 

approximately N-trending convergence of the African and Western Europe plates (DeMets et 

al. 1990, 1994), and with geodetic measurements from VLBI in this region (Ward 1994; 

Zarraoa et al. 1994). In contrast, the Digne nappe stress state (zone C) is inconsistent with the 

stress regimes of zones B and E.  

Moreover, the northern part of the Digne nappe, zone D, which have average focal 

depth corresponds to the E2 zone of Sue's focal mechanisms (Sue 1998, Sue et al. 1999). 

Both the current and the Sue inversions determine normal faulting stress states with an 

approximately WNW-trending σ3 axis. An extensional regime has been inferred from the 

earthquake focal mechanisms within the major part of the western alpine core (Sue 1998; Sue 

et al. 1999). This extensional regime could be due to gravitational body forces related to the 

Alpine high topography, i.e., a response to buoyancy forces which presently drive the 

extension of the core of the western Alpine arc. 

Conversely, the front of the Digne nappe is characterised by a reverse faulting stress 

regime with a NE-trending σ1 axis. The stress state we determined by inversion of seismic 

slip (earthquake focal mechanisms) in the Digne and Castellane nappes is in close agreement 

with the geologically determined stress state that has been provided by inversion of slip-

vectors (striae) measured along the nappes (Ritz 1991). This similarity strongly suggests that 

the determined stress states are regionally significant. According to Ritz (1991), the Digne 

and Castellane thrusts seems shallow and can be considered as flowing toward the open 

southern basins, i.e., Valensole and Var basins. Moreover, Ritz (1991) explains that the 

Maures Massif controls the Castellane nappe progression (see on Fig. 1 for location). 

Therefore, we can consider the eastern part of Provence, between the Moyenne 

Durance Fault and the SE of Argentera Massif, as a block (except the Digne and Castellane 

nappes) which the Africa-Europe convergence controls. The north-east domain of this 

Provence block is just draped by the Digne and Castellane nappes that are pushed by the core 

of the western Alpine Arc. The Moyenne Durance Fault kinematics results from the Provence 

block movement and thus is not influenced by the Digne stress state, even if the Digne Thrust 

is very close. Consequently, our results suggest that different boundary forces influence the 
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deformation both of the Digne nappe and the Provence block, including the Moyenne 

Durance fault; i.e., to the north-east, the push of the Alpine front, and to the southeast, the 

northward African drift. 

The stress state in the Rhone valley (zone A) differs drastically from the regimes 

acting on the other Provence blocks. Indeed, the stress regime determined by seismic slip 

inversion is clearly extensional with an E-trending σ3 axis. Around Avignon, two normal-

faulting focal mechanisms of Ml=3.1 and Ml=3.6 earthquakes show normal dip-slip on N-

striking fault planes, suggesting that the NE-trending Nîmes fault could have presently a 

normal displacement with a small strike-slip component. 

This normal faulting does not agree with the deformation observed in the paleoseismic 

trench at Courthézon, located in the Rhone valley, about 15 km north to Avignon (Carbon et 

al. 1993; Combes et al. 1993; Ghafiri 1995; Blès et al. 1995; Sébrier et al. 1997). This trench 

demonstrates a reverse fault affecting a Middle-Riss terrace. The age of these terrace deposits 

is undefined and only estimated by lithologic correlation and thus it could correspond to early 

Pleistocene sediments. However, this observation suggests a recent change, i.e., probably in 

the Quaternary, from a reverse to a normal faulting in stress regime, supporting results of 

previous faulting analysis in the Rhone valley. Indeed, Blès & Gros (1991) describe N-

striking normal faults affecting late Pliocene sediments, with a cumulative displacement of 

about 20 meters. This confirms a Quaternary E-trending extension acting in the Bas-

Dauphiné, between Valence and Vienne (about 45.10˚N-5.00˚E). This normal faulting is 

described as subsequent to a regional compression. 

This temporal change in stress regime from reverse to normal faulting is consistent with 

a temporal variation in the magnitude of the maximum horizontal stress. Unfortunately, the 

timing of the temporal variations in stress state inferred from the geologic/seismic data is too 

poor to determine if there has been a single recent absolute change in stress magnitude. 

Nonetheless, the orientation of the E-trending σ3 axis is coherent with the regional direction 

of the Africa convergence, toward the NNW. 

The Moho discontinuity in the Rhone Valley is 25-km deep, and the Cenozoic 

sedimentary cover is thick, i.e., about 6-7 km (Hirn, 1980). The continental crust all along the 

Valley is thus very thin. The high heat flow due to crust thickness could explain the low 

seismicity we observed. Consequently, aseismic deformations may be efficient in the region. 

In addition, in the Massif Central, sparse but significant and regular seismicity testifies for an 

extensional tectonic regime coeval with a regional uplift (Delouis et al. 1993). Striae 

measured on fault planes affecting post-late Miocene deposits indicate a normal faulting 
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stress regime with an ENE-trending extension (Burg & Etchecopar, 1980). This geologically 

and seismically active extension could result from effects of the mantle plume described 

under the Massif Central (Granet et al. 1995; Sobolev et al. 1996; 1997). In fact, it could 

result from superposition of buoyancy forces related to the mantle upwelling on the regional 

stress resulting from boundary forces. These resulting extensional Massif Central forces can 

influence the Rhone Valley domain and produce the present-day stress regime determined by 

seismic slip inversion. 

 

V - Conclusion  

We computed in the current study 17 new focal mechanisms for earthquakes affecting 

SE France and we compiled 89 earthquakes, including the new solutions between the Alpine 

and Massif Central fronts up to the Ligurian Sea. We identified 6 different deformation 

domains corresponding to the main "tectonic regions" of Provence and the Ligurian Sea. 

Then, performing inversions of the seismic slip-vector (focal solutions) dataset, we 

determined the stress state characterising of each of these tectonic domains.  

Regionally this study allows us to identify two zones around the Provence block 

characterised by drastically different stress regimes: the western one affected by an 

extensional stress (normal faulting) regime and an eastern one by a compressional stress 

(reverse to strike-slip faulting) regime. 

The compressional stress field in the Provence domain approximately agrees with the 

plate convergence between Africa and Europe. The Moyenne Durance Fault movement 

(reverse with left-lateral strike slip movement) is not controlled by the Digne nappes stress 

state but directly by the northward drift of the African plate. We thus observed a drastic 

change of the stress state orientation in a very narrow zone around the Moyenne Durance 

Fault. 

In the Rhone Valley, an E-trending extension characterises the tectonic regime. This 

extension can be correlated with the uplifted and thin crust of the Massif Central related to an 

active mantle plume. However, our observations provide evidence for a temporal change in 

the stress regime from reverse to normal faulting probably during the Pleistocene that is 

consistent with a temporal variation in the magnitude of the maximum horizontal stress. 

In conclusion, this study provides evidence for abrupt spatial stress changes in a narrow 

zone that reflect abrupt change in the boundary force influences. Indeed, these spatial stress 

changes around the Provence block result from the coeval influence of forces applied at both 



 13 

its extremities, i.e., to the north-east, the Alpine front push, and to the southeast, the 

northward African plate drift. Besides these boundary forces, the influence of the mantle 

plume under the Massif Central, around the western block boundary, could be superimposed. 

However, these abrupt spatial stress changes in a narrow zone could reflect a tectonic model 

with upper crustal fragments (blocks) decoupled from the lithospheric mantle by the ductile 

lower crust as suggested by Müller et al. (1997) for short-scale variation of the tectonic 

regimes acting in western Europe. 
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Appendix A: Methodology of the inversion of seismic slip-vector dataset to determine 

the stress state 

 

To compute the stress states, we performed quantitative inversions of the earthquake 

focal mechanisms, using the method proposed by Carey-Gailhardis & Mercier (1987, 1992). 

This inversion method assumes that the slip (s, represented by a slip-vector corresponding to 

a striation for geological data or a rake for seismological focal mechanisms) occurs in the 

direction of the resolved shear stress (τ) on each fault plane, the fault plane being a pre-

existing fracture. The inversion computes a mean best-fitting deviatoric stress tensor from a 

set of fault slip-vectors by minimising the angular deviation between a predicted slip-vector 

(maximum shear, τ) and the observed slip-vector (s) deduced from the focal mechanism, in 

the case of a seismic event (Carey & Brunier 1974; Carey 1979). All inversion results 

include the orientation (azimuth and plunge) of the principal stress axes of a mean deviatoric 

stress tensor as well as a "stress ratio" R=(σ2-σ1)/(σ3-σ1), a linear quantity describing relative 

stress magnitudes, where the principal stress axes, σ1, σ2 and σ3, correspond to the 

compressional, intermediate and extensional deviatoric stress axes, respectively. 

To compute stress state from earthquake focal mechanisms it is necessary to know the 

seismic slip-vector, and consequently to select the preferred seismic fault plane for each pair 

of nodal planes. For major earthquakes, the selection can be made if there is a co-seismic 

rupture, or by the spatial epicentre distribution of the aftershock sequence. For earthquake 
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populations characterised by low magnitude and no surface rupture, there exists another 

alternative, i.e., by computation. Indeed, because only one of the two slip-vectors of a focal 

mechanism solution is the seismic fault slip-vector in agreement with the principal stress 

axes, it is possible to compute it following Bott's model (1959). For this slip-vector, the R 

ratio defined R=(σ2-σ1)/(σ3-σ1), is such that 0<R<1 (Carey-Gailhardis & Mercier 1987). 

Moreover, if one of the nodal planes satisfies this condition, the other one does not, except if 

the both nodal planes of a focal mechanism intersect each other along a principal stress axis 

(Carey-Gailhardis & Mercier 1987). In this study, to select the seismic fault plane of each 

focal mechanism, we have used the computation method explained above. Generally, a set of 

seismic event focal mechanisms leads to a well-defined evaluation of the regional stress state 

in agreement with the geologically determined stress state, i.e., stress state resulting from 

inversions of striae measured on fault planes (e.g., Sébrier et al. 1988; Bellier et al. 1991; 

Mercier et al. 1991, 1992; Bellier & Zoback 1995; Bellier et al. 1997). 

As mentioned above, fault slip inversion schemes are based on the assumption that the 

slip direction on each plane represents the direction of the maximum resolved shear stress on 

that plane. In this case there are 4 unknowns (three defining the orientation of the principal 

axes and one defining the stress ratio R) and the inversion thus requires at least 4 independent 

fault sets. Ideal data sets include faults with variable dip angle and with distinct strike 

directions, not just a continuum of strikes around a single mean direction. A slip-vector, 

determined from a focal mechanism, is generally considered as mechanically explained by a 

computed stress deviator when the deviation angle between the calculated slip-vector "τ" and 

the observed slip-vector "s" is less than 20°. Results of stress inversions are considered 

reliable if 80% of the deviation angles between τ and s are less than 20° and if the computed 

solution is stable, i.e., the inversion tends toward the same solution regardless of the initial 

given parameter values (Carey 1979; Carey-Gailhardis & Mercier 1987, 1992; Mercier et al. 

1991, Bellier & Zoback 1995). 

In addition, for the stress state computation we weighted each fault plane as a function 

of the earthquake magnitude and focal mechanism quality.  

The uncertainties of the stress axes for each zone were calculated computing n 

inversions with n-1 data (if n is the number of data in the conssidered zone) removing one 

different datum each time, but keeping the same weight. The uncertainty for each σ  axis is 

given in degrees and results from the mean of the angles between the position of σ computed 

with n-1 and n data. It corresponds to the radius of a confidence cone around each σ  axis. 
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In case of earthquakes with multiple solutions, we selected the solution, which is the 

most coherent with the other mechanisms characterising the surrounding area. To verify this 

condition, the first stage of the algorithm used is to define compressional and tensional zones 

by the right dihedral method (Carey-Gailhardis & Vergely 1992), resulting from 

superimposition of the compressional and tensional quadrants limited by the nodal planes. 

This preliminary stage permits us to test the homogeneity of the data set used for the 

inversion. The zones are defined by a trial and error process of mechanism groups allowing 

the best homogeneity of solutions. 

 

 

Figure caption 

 

Figure 1: Tectonic map of the area around Provence (modified from Ritz 1991) with the focal 

solutions (lower hemisphere), computed in this study. 

 

Figure 2: The seismological network available for the south-east France study. The stars are 

LDG stations, the triangles IPSN stations, the white circles the ReNaSS stations, the crosses 

the IGG stations and diamonds SISMALP stations. The black dot represents the Gardanne 

mine, and the rectangular region indicates the location of the earthquakes studied. 

 

Figure 3: Examples of different focal solutions obtained: 1: for the 880805 event a- the 

graphical solution, b- the 2 solutions obtained with FPFIT code. 2: for the 971106 event a- the 

graphical solution, b- the FPFIT solution, c- the solution published by Sue et al. (1999). 

 

Figure 4: The detailed focal solutions showing the polarity distributions and multiple 

solutions if applicable. 

 

Figure 5: The focal solutions collected from literature. The new solutions are reported in 

grey. DF: Moyenne Durance Fault. 

 

Figure 6: Diagrams of focal mechanisms inversions of Provence earthquakes. Upper 

histograms show the focal depth repartition in each zone. Small arrows, attached to the fault 

planes, in the diagrams (Wulff stereonet, low hemisphere) show the slip-vector direction. 
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White and black arrows indicate the σ1 and σ3 axis directions, respectively. Lower histograms 

give the angular deviation between the predicted slip-vector "τ" and the observed slip-vector 

"s". They do not take into account the weight of each datum. Numbers correspond to the 

labels in Tables 1 & 2. To differentiate a new solution from old ones, we add a "9" at the new 

event labels. For the corresponding zones (A to F), see the text, and Fig. 7. 

 

Figure 7: Distributions of stress orientations in the different zones of Provence. White and 

black arrows indicate the σ1 and σ3 axis directions, respectively. Dots correspond to 

earthquake locations and DF is for Durance Fault. For the corresponding zones (A to F), see 

the text. These zones are well-defined in terms of stress regime but the boundaries are not 

well constrained because of the epicentral location. The inset in the upper-left: I: Extensional 

tectonic region; II: Africa/Europe convergence influence zone; III: Alpine influence zone.  

 

Table caption 

 

Table 1: Locations and parameters of focal mechanisms obtained in this study. For the 

corresponding zones, see the text. 

 

Table 2: Locations and parameters of focal mechanisms from the authors of the reference 

literature (Bo: Bossolasco et al. 1972; F: Fréchet & Pavoni 1979; B1: Béthoux et al 1988; N: 

Nicolas et al. 1990; D: Deverchère et al. 1991; B2: Béthoux et al. 1992; M: Madeddu et al. 

1996; S; Sue et al. 1999; V: Volant et al. 2000; E: Dister in Eva & Solarino 1998). For the 

corresponding zones, see the text. 

 

Table 3: Results of regional stress tensor inversions from the significant focal mechanisms in 

each zone around the Provence block. N corresponds to the number of focal mechanisms 

used for the inversions. Deviatoric principal stress axes σ1, σ2, σ3, are the compressional, 

intermediate and extensional deviatoric axes, respectively. They are specified by azimuths 

(Az) measured clockwise from North, plunges (dip) are measured from horizontal. ∆ is the 

angular deviation corresponding to the radius in degrees of a confidence cone around each σ 

axis. R=(σ2-σ1)/(σ3-σ1), the "stress ratio" of the deviatoric stress tensor. For the 

corresponding zones, see the text. For explanation of the calculation methodology see 

Appendix A. 
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Table 1

No. Zone DATE Time Longitude Latitude Ml Depth
yymmdd hh:mm:ss °E °N km Az. Dip Rake Az. Dip Rake Az. Dip Az. Dip

n1 C 800315 08:00:47.86 6,3528 44,2248 3,8 5 147 45 124 284 54 61 034 05 135 67
n2 C 870509 06:00:16.74 6,8377 44,2050 3.4 0,5 316 43 133 084 60 57 197 10 304 60
n3 C 870628 02:12:52.84 6,1410 44,1668 4,0 1 125 53 118 264 45 58 194 04 095 68
n4 D 880326 12:17:10.29 6,6862 44,4912 3.7 7 008 56 -57 237 46 -129 222 63 121 06
n5 880805 22:01:33.25 6,4690 43,7877 3.6 5 270 70 -171 003 82 -20 228 20 135 08
n6 C 890212 03:52:03.45 6,4542 44,2198 3.8 10 259 48 59 121 50 120 190 01 097 67
n7 B 920128 21:35:05.38 5,1043 43,1460 3,4 0,5 250 36 122 032 60 69 137 13 260 67
n8 920419 22:24:53.25 6,2155 44,2607 3.0 5 121 54 -118 259 44 -57 089 67 192 05
n9 D 920731 20:14:27.46 6,3883 44,4722 3,0 0,5 035 39 -129 169 60 -63 033 64 278 12

n10 C 930414 10:32:06.79 6,2272 44,2285 3.2 3 134 34 79 327 57 97 052 11 260 77
n11 941124 21:17:35.41 6,4443 43,8198 3,5 1,5 077 49 77 276 43 105 176 03 285 80
n12 A 960325 04:27:32.62 4,7263 43,9135 3,1 6 190 57 -151 297 66 -37 157 42 062 05
n13 D 971003 15:03:35.44 6,4440 44,3303 3,8 0,5 037 52 -153 144 69 -41 007 43 267 11
n14 C 971031 04:23:43.42 6,5545 44,2660 4,7 5 158 53 159 261 73 39 025 13 126 39
n15 C 971106 12:39:48.69 6,4975 44,4178 3,6 5 177 61 163 275 75 30 043 10 139 31
n16 A 980209 14:16:56.35 4,8913 43,9055 3,1 6 024 73 -78 239 21 -123 277 60 123 27
n17 980506 12:02:26.22 6,0858 44,1605 3,2 4 166 80 142 264 53 13 221 18 118 34

Plane A Plane B P axe Taxe



Table 2 (1/2)

No. Zone DATE Time Longitude Latitude Ml Depth Ref.
yymmdd hh:mm:ss °E °N km Az. Dip Rake Az. Dip Rake Az. Dip Az. Dip

1 F 630719 05:46:04.0 8,0390 43,3360 6.0 14 356 53 060 220 46 124 107 04 205 66 Bo
2 F 630727 05:57:00.0 8,1300 43,5600 4,8 14 000 80 031 264 61 168 129 13 226 28 D
3 C 691122 07:49:15.0 6,8060 44,2550 3.6 7 166 60 127 290 46 044 231 08 128 58 F
4 E 701230 02:20:00.0 8,2530 44,1380 4,0 5 224 52 -155 330 70 -041 193 42 093 11 D
5 F 710925 10:34:00.0 8,7300 44,1170 4,2 5 150 75 -169 243 80 -015 107 18 016 04 D
6 C 720619 04:09:51.0 6,3330 44,3600 3.8 2 199 60 153 303 67 033 070 05 163 39 F
7 C 721229 00:14:17.0 7,1690 44,3140 3.6 9 295 48 054 162 52 123 229 03 134 64 F
8 A 780829 22:23:48.1 3,2900 43,6900 4.1 8 032 57 -080 230 34 -105 272 76 129 12 N 
9 F 810105 08:10:00.0 8,0000 43,1410 3,6 10 020 50 090 200 40 090 110 05 290 85 D

10 F 810422 04:26:21.0 8,0650 43,3490 4.5 9 240 68 -180 150 90 -000 103 15 197 15 B1
11 820902 21:45:25.0 7,2630 43,9280 3.3 10 235 60 -109 020 35 -060 185 69 311 13 B1
12 821223 14:48:13.8 3,7500 43,0300 4.1 6 014 88 -027 283 67 -178 242 20 145 17 N 
13 830320 16:01:31.1 6,4500 44,3800 3.9 6 010 40 114 160 54 071 263 07 018 73 N 
14 E 831204 17:34:51.0 7,7590 43,8600 3.5 4 190 54 -148 300 65 -041 160 46 063 07 B1
15 C 831222 18:12:21.0 6,7280 44,2750 3.5 6 356 57 155 100 70 036 226 08 322 39 B1
16 A 840219 21:14:37.7 5,5400 43,4200 4.3 8 226 44 -153 336 72 -049 204 47 095 17 N 
17 B 840619 11:40:37.1 6,1600 43,9900 4.1 10 278 44 109 073 49 073 175 02 276 77 N 
18 B 840630 19:34:05.8 6,1300 44,0000 3.8 6 300 55 129 065 51 048 003 02 269 59 N 
19 F 851004 13:17:21.5 7,9800 43,5700 4.0 10 132 66 017 035 75 155 085 06 352 28 N 
20 F 851004 15:22:11.0 7,9160 43,6100 3.9 14 210 45 108 005 48 073 107 01 204 77 B1
21 F 851005 15:58:40.0 7,9160 43,5930 3.1 11 040 77 159 135 69 014 088 05 356 24 B1
22 860115 22:19:18.6 2,8700 43,5000 3.7 2 146 86 099 261 09 025 228 40 065 48 N 
23 860117 18:48:03.0 7,3390 44,3510 3.3 6 210 33 -130 345 65 -067 219 63 092 17 B1
24 D 860117 20:27:19.0 6,3960 44,2290 3.6 6 010 43 -107 167 49 -075 013 78 268 03 B1
25 A 860225 17:10:39.9 4,7200 43,9500 3.6 5 203 43 -102 007 48 -079 212 82 105 03 N 
26 D 860323 13:59:23.9 6,4400 44,2800 3.7 7 140 40 -025 030 74 -127 339 47 093 20 N 
27 F 860501 00:28:01.8 7,4400 43,4400 3.8 5 115 78 166 208 78 012 341 00 007 17 N 
28 860818 11:37:12.0 7,1550 44,0810 3.2 6 155 75 -085 355 15 -109 065 60 245 30 B1
29 E 861020 20:29:11.0 7,7090 43,9300 3.0 2 203 79 -170 295 80 -011 159 15 069 01 B1
30 E 861029 08:13:34.0 8,2100 43,8210 3.0 10 204 84 -171 295 81 -006 159 11 250 02 B1
31 A 870205 09:59:37.8 4,5600 43,6600 3.5 5 356 72 -067 230 29 -140 236 57 104 24 N 
32 870509 06:00:17.0 6,8650 44,1640 3.4 6 050 47 -152 160 70 -047 025 47 280 14 B1
33 890212 03:52:03.7 6,4930 44,1900 3.8 9 302 60 119 074 41 050 012 10 261 63 M
34 F 891226 19:59:59.0 7,5610 43,4830 4.5 4 015 60 070 231 36 121 119 13 244 68 B2
35 F 900415 07:50:36.0 7,7740 43,5740 4.3 5 025 70 042 278 51 154 148 12 259 43 B2
36 D 900507 14:20:51.7 6,7480 44,3400 2.9 5 255 58 -171 350 82 -032 217 28 118 16 M

Plane BPlane A TaxeP axe



Table 2 (2/2)

No. Zone DATE Time Longitude Latitude Ml Depth Ref.
yymmdd hh:mm:ss °E °N km Az. Dip Rake Az. Dip Rake Az. Dip Az. Dip

Plane BPlane A TaxeP axe

37 900629 01:19:00.0 6,3840 44,1670 3.1 6 309 86 166 040 76 004 355 07 264 13 D
38 D 900629 08:55:00.0 6,3420 44,1900 2.8 6 018 64 -158 118 70 -028 340 33 247 04 D
39 E 900702 18:42:00.0 7,7250 43,9320 2.7 4 190 63 -137 303 53 -035 152 49 249 06 D
40 900809 19:16:57.6 7,4200 44,0030 3.2 6 116 60 -168 212 80 -031 078 29 341 13 M
41 900908 08:31:22.9 7,3800 43,8400 2.7 11 060 40 132 190 62 061 301 12 053 61 M
42 E 901002 02:06:24.1 7,7100 43,9400 2.9 11 300 80 -027 205 64 -169 165 26 070 11 M
43 901022 02:11:08.8 7,2200 44,1400 3.0 4 353 60 -134 110 52 -039 053 05 317 52 M
44 901109 10:59:02.6 6,5980 43,9300 3.3 2 152 58 055 025 46 133 266 07 008 60 M
45 E 910205 09:06:10.3 7,7600 43,7900 3.0 8 339 75 -136 083 48 -020 296 40 037 17 M
46 E 910219 15:33:00.0 7,6580 44,0430 3,0 7 215 40 055 077 58 115 149 10 036 66 M
47 E 910225 11:30:11.8 7,6600 44,0480 3.3 4 215 40 053 080 59 117 151 10 038 64 M
48 E 910628 23:48:48.0 7,4900 43,6700 2.9 5 092 62 108 237 33 060 169 15 038 68 M
49 910714 20:47:50.5 7,2100 44,0700 2.9 5 020 81 151 115 61 010 071 13 334 27 M
50 D 920102 02:12:00.0 6,4350 44,4130 2.3 8 050 55 -030 158 66 -141 018 44 282 07 S
51 F 920921 12:37:04.0 8,3278 43,2445 3,0 20 000 50 080 195 41 101 097 05 217 81 D
52 930505 04:34:00.0 6,8370 44,2680 1.2 10 115 25 110 273 67 081 010 21 166 67 S
53 F 930717 10:35:00.6 8,2525 44,2215 4,5 8 165 65 009 071 81 155 120 11 025 24 D
54 930717 11:08:23.2 8,2623 44,2273 3,7 9 085 70 -009 352 81 -160 307 21 040 07 D
55 940415 02:58:00.0 6,7310 44,2830 1.8 6 150 75 -110 275 25 -038 085 56 224 27 S
56 D 940627 17:48:00.0 6,4330 44,4330 2.7 7 165 15 -140 294 80 -078 190 53 034 34 S
57 D 940924 04:18:00.0 6,8770 44,5360 2.5 4 005 70 -070 232 28 -133 246 60 110 22 S
58 C 941113 00:36:00.0 6,4610 44,3180 1.4 7 100 70 100 253 22 064 182 24 026 64 S
59 D 941128 08:28:00.0 6,6560 44,3370 1.8 9 015 60 -140 128 56 -037 340 48 072 02 S
60 E 950421 08:02:57.5 7,5563 43,8155 4,3 4 030 80 039 292 51 167 155 19 259 35 D
61 D 951013 22:07:00.0 6,8490 44,5110 2.9 6 340 70 -040 234 53 -155 203 42 103 11 S
62 D 951018 02:13:00.0 6,8880 44,5090 2.1 4 135 55 -070 347 40 -116 354 72 239 08 S
63 D 960809 17:31:00.0 6,4190 44,3910 1.7 7 075 70 -120 196 36 -036 023 55 143 19 S
64 E 960926 21:37:36.7 7,6307 43,9562 2,7 7 187 40 -116 335 55 -070 194 72 079 08 D
65 B 961007 12:26:27.9 5,7845 43,8335 2,9 3 094 67 169 188 80 023 319 09 053 23 V
66 E 961017 15:21:38.8 7,5287 43,9953 3,2 10 160 40 -090 340 50 -090 250 85 070 05 D
67 961124 00:27:08.1 7,6783 44,4450 3,5 3 212 27 -135 344 71 -070 226 59 089 23 D
68 F 961125 19:47:23.2 8,5465 44,1390 3,8 3 335 40 040 212 66 123 278 14 165 58 D
69 B 970208 19:18:42.8 5,6228 43,6370 2,9 9 050 73 011 317 79 163 004 05 273 19 V
70 971022 04:51:00.0 6,5210 44,4100 2.1 9 020 20 -040 252 77 -106 181 55 329 31 S
71 971031 04:23:00.0 6,5470 44,2710 4.0 5 060 60 050 299 48 138 177 07 277 55 S
72 971106 12:39:00.0 6,5180 44,4110 3.1 9 095 75 030 357 61 163 223 09 319 32 S



Table 3

Zone N R value
Az. Dip (˚) Az. Dip (˚) Az. Dip (˚)

A 6 150 69 20 004 17 11 270 11 9 0,72
B 5 158 05 8 249 04 23 012 83 15 0,49
C 12 046 05 1 316 04 2 185 84 5 0,68
D 14 196 79 5 012 11 3 102 01 2 0,47
E 13 155 10 3 021 76 5 247 10 3 0,51
F 14 115 12 2 023 10 2 257 74 3 0,78

1 2 3




