533 research outputs found

    Combined BIMA and OVRO observations of comet C/1999 S4 (LINEAR)

    Get PDF
    We present results from an observing campaign of the molecular content of the coma of comet C/1999 S4 (LINEAR) carried out jointly with the millimeter-arrays of the Berkeley-Illinois-Maryland Association (BIMA) and the Owens Valley Radio Observatory (OVRO). Using the BIMA array in autocorrelation (`single-dish') mode, we detected weak HCN J=1-0 emission from comet C/1999 S4 (LINEAR) at 14 +- 4 mK km/s averaged over the 143" beam. The three days over which emission was detected, 2000 July 21.9-24.2, immediately precede the reported full breakup of the nucleus of this comet. During this same period, we find an upper limit for HCN 1-0 of 144 mJy/beam km/s (203 mK km/s) in the 9"x12" synthesized beam of combined observations of BIMA and OVRO in cross-correlation (`imaging') mode. Together with reported values of HCN 1-0 emission in the 28" IRAM 30-meter beam, our data probe the spatial distribution of the HCN emission from radii of 1300 to 19,000 km. Using literature results of HCN excitation in cometary comae, we find that the relative line fluxes in the 12"x9", 28" and 143" beams are consistent with expectations for a nuclear source of HCN and expansion of the volatile gases and evaporating icy grains following a Haser model.Comment: 18 pages, 3 figures. Uses aastex. AJ in pres

    Fermi-liquid-type spectral function and angle resolved photoelectron spectra of the Ti-3dz2-band of TiTe2

    Full text link
    Angle and temperature dependent photoelectron spectra with high energy and momentum resolution ([Delta]E = 300meV, [Delta][theta]Eb eV) of the quasi-two-dimensional, metallic layer compound TiTe2 along the direction . The aim was to test the range of the validity of the Fermi liquid model using a Taylor expansion for the self-energy used by Claessen et al. [1] for a system whose low energy properties are those of a normal metal. Single crystalline samples have been prepared by vapor growth technique using different amounts of Te in order to influence the intercalation of surplus Ti. We found a dependence of the dispersion of the Ti-3dz2-derived band on the stoichiometry of the samples. For an exact line shape analysis the spectra were fitted by a least-squares-method to a Fermi-liquid-type spectral function taking into account the crucial effects due to the apparatus, as there are the energy resolution and finite angle resolution which leads to a limited integration in k-space. In the region where the Ti-3dz2-derived band crosses the Fermi level we found excellent agreement between the experimental line shape and the Fermi liquid model. On the other hand there are distinct deviations between the theoretical and the experimental line shape at the Brillouin zone boundary even for a self-energy proposed by Matho [2] without Taylor expansion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31581/1/0000510.pd

    Atomic Tunneling from a STM/AFM tip: Dissipative Quantum Effects from Phonons

    Full text link
    We study the effects of phonons on the tunneling of an atom between two surfaces. In contrast to an atom tunneling in the bulk, the phonons couple very strongly, and qualitatively change the tunneling behavior. This is the first example of {\it ohmic} coupling from phonons for a two-state system. We propose an experiment in which an atom tunnels from the tip of an STM, and show how its behavior would be similar to the Macroscopic Quantum Coherence behavior predicted for SQUIDS. The ability to tune and calculate many parameters would lead to detailed tests of the standard theories. (For a general intro to this work on the on the World-Wide-Web: http://www.lassp.cornell.edu. Click on ``Entertaining Science Done Here'' and ``Quantum Tunneling of Atoms'')Comment: 12 pages, ReVTex3.0, two figures (postscript). This is a (substantially) revised version of cond-mat/9406043. More info (+ postscript text) at : http://www.lassp.cornell.edu/ardlouis/publications.htm

    Microwave, infrared and Raman spectra, r0 structural parameters, ab initio calculations and vibrational assignment of 1-fluoro-1-silacyclopentanea)

    Get PDF
    The microwave spectrum (6500–18 500 MHz) of 1-fluoro-1-silacyclopentane, c-C4H8SiHF has been recorded and 87 transitions for the 28Si, 29Si, 30Si, and 13C isotopomers have been assigned for a single conformer. Infrared spectra (3050-350 cm−1) of the gas and solid and Raman spectrum (3100-40 cm−1) of the liquid have also been recorded. The vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twist form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but much lower energy than the planar conformer. By utilizing the microwaverotational constants for seven isotopomers (28Si, 29Si, 30Si, and four 13C) combined with the structural parameters predicted from the MP2(full)/6–311+G(d,p) calculations, adjusted r0 structural parameters have been obtained for the twist conformer. The heavy atom distances in Å are: r0(SiC2) = 1.875(3); r0(SiC3) = 1.872(3); r0(C2C4) = 1.549(3); r0(C3C5) = 1.547(3); r0(C4C5) = 1.542(3); r0(SiF) = 1.598(3) and the angles in degrees are: ∠CSiC = 96.7(5); ∠SiC2C4 = 103.6(5); ∠SiC3C5 = 102.9(5); ∠C2C4C5 = 108.4(5); ∠C3C5C4 = 108.1(5); ∠F6Si1C2 = 110.7(5); ∠F6Si1C3 = 111.6(5). The heavy atom ring parameters are compared to the corresponding rs parameters. Normal coordinate calculations with scaled force constants from MP2(full)/6–31G(d) calculations were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, and infrared band contours. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings

    Polarimetry and the Long Awaited Superoutburst of BZ UMa

    Full text link
    BZ UMa is a cataclysmic variable star whose specific classification has eluded researchers since its discovery in 1968. It has outburst and spectral properties consistent with both U Gem class dwarf novae and intermediate polars. We present new photometric and polarimetric measurements of recent outbursts, including the first detected superoutburst of the system. Statistical analysis of these and archival data from outbursts over the past 40 years present a case for BZ UMa as a non-magnetic, U Gem class, SU-UMa subclass dwarf novae.Comment: Accepted by PASP for the November, 2009 issu

    CCSD(T) Study of CD3-O-CD3 and CH3-O-CD3 Far-Infrared Spectra

    Get PDF
    From a vibrationally corrected 3D potential energy surface determined with highly correlated ab initio calculations (CCSD(T)), the lowest vibrational energies of two dimethyl-ether isotopologues, 12CH3–16O–12CD3 (DME-d3) and 12CD3–16O–12CD3 (DME-d6), are computed variationally. The levels that can be populated at very low temperatures correspond to the COC-bending and the two methyl torsional modes. Molecular symmetry groups are used for the classification of levels and torsional splittings. DME-d6 belongs to the G36 group, as the most abundant isotopologue 12CH3–16O–12CH3 (DME-h6), while DME-d3 is a G18 species. Previous assignments of experimental Raman and far-infrared spectra are discussed from an effective Hamiltonian obtained after refining the ab initio parameters. Because a good agreement between calculated and experimental transition frequencies is reached, new assignments are proposed for various combination bands corresponding to the two deuterated isotopologues and for the 020 → 030 transition of DME-d6. Vibrationally corrected potential energy barriers, structural parameters, and anharmonic spectroscopic parameters are provided. For the 3N – 9 neglected vibrational modes, harmonic and anharmonic fundamental frequencies are obtained using second-order perturbation theory by means of CCSD and MP2 force fields. Fermi resonances between the COC-bending and the torsional modes modify DME-d3 intensities and the band positions of the torsional overtones

    Dust and Metal Column Densities in Gamma-Ray Burst Host Galaxies

    Full text link
    In this paper we present the results from the analysis of a sample of 28 gamma-ray burst (GRB) afterglow spectral energy distributions, spanning the X-ray through to near-infrared wavelengths. This is the largest sample of GRB afterglow spectral energy distributions thus far studied, providing a strong handle on the optical depth distribution of soft X-ray absorption and dust-extinction systems in GRB host galaxies. We detect an absorption system within the GRB host galaxy in 79% of the sample, and an extinction system in 71% of the sample, and find the Small Magellanic Cloud (SMC) extinction law to provide an acceptable fit to the host galaxy extinction profile for the majority of cases, consistent with previous findings. The range in the soft X-ray absorption to dust-extinction ratio, N_{H,X}/Av, in GRB host galaxies spans almost two orders of magnitude, and the typical ratios are significantly larger than those of the Magellanic Clouds or Milky Way. Although dust destruction could be a cause, at least in part, for the large N_{H,X}/Av ratios, the good fit provided by the SMC extinction law for the majority of our sample suggests that there is an abundance of small dust grains in the GRB environment, which we would expect to have been destroyed if dust destruction were responsible for the large N_{H,X}/Av ratios. Instead, our analysis suggests that the distribution of N_{H,X}/Av in GRB host galaxies may be mostly intrinsic to these galaxies, and this is further substantiated by evidence for a strong negative correlation between N_{H,X}/Av and metallicity for a subsample of GRB hosts with known metallicity. Furthermore, we find the N_{H,X}/Av ratio and metallicity for this subsample of GRBs to be comparable to the relation found in other more metal-rich galaxies.Comment: 23 pages, 10 figures, accepted for publication in MNRA

    Raman and infrared spectra of dimethyl ether 13C-isotopologue (CH3O13CH3) from a CCSD(T) potential energy surface

    Get PDF
    So far, no experimental data of the infrared and Raman spectra of 13C isotopologue of dimethyl ether are available. With the aim of providing some clues of its low-lying vibrational bands and with the hope of contributing in a next spectral analysis, a number of vibrational transition frequencies below 300 cm−1 of the infrared spectrum and around 400 cm−1 of the Raman spectrum have been predicted and their assignments were proposed. Calculations were carried out through an ab initio three dimensional potential energy surface based on a previously reported one for the most abundant dimethyl ether isotopologue (M. Villa et al., J. Phys. Chem. A 115 (2011) 13573). The potential function was vibrationally corrected and computed with a highly correlated CCSD(T) method involving the COC bending angle and the two large amplitude CH3 internal rotation degrees of freedom. Also, the Hamiltonian parameters could represent a support for the spectral characterization of this species. Although the computed vibrational term values are expected to be very accurate, an empirical adjustment of the Hamiltonian has been performed with the purpose of anticipating some workable corrections to any possible divergence of the vibrational frequencies. Also, the symmetry breaking derived from the isotopic substitution of 13C in the dimethyl ether was taken into account when the symmetrization procedure was applied

    Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report Within the HARMONY Project

    Get PDF
    PURPOSEPatients with newly diagnosed multiple myeloma (NDMM) show heterogeneous outcomes, and approximately 60% of them are at intermediate-risk according to the Revised International Staging system (R-ISS), the standard-of-care risk stratification model. Moreover, chromosome 1q gain/amplification (1q+) recently proved to be a poor prognostic factor. In this study, we revised the R-ISS by analyzing the additive value of each single risk feature, including 1q+.PATIENTS AND METHODSThe European Myeloma Network, within the HARMONY project, collected individual data from 10,843 patients with NDMM enrolled in 16 clinical trials. An additive scoring system on the basis of top features predicting progression-free survival (PFS) and overall survival (OS) was developed and validated.RESULTSIn the training set (N = 7,072), at a median follow-up of 75 months, ISS, del(17p), lactate dehydrogenase, t(4;14), and 1q+ had the highest impact on PFS and OS. These variables were all simultaneously present in 2,226 patients. A value was assigned to each risk feature according to their OS impact (ISS-III 1.5, ISS-II 1, del(17p) 1, high lactate dehydrogenase 1, and 1q+ 0.5 points). Patients were stratified into four risk groups according to the total additive score: low (Second Revision of the International Staging System [R2-ISS]-I, 19.2%, 0 points), low-intermediate (II, 30.8%, 0.5-1 points), intermediate-high (III, 41.2%, 1.5-2.5 points), high (IV, 8.8%, 3-5 points). Median OS was not reached versus 109.2 versus 68.5 versus 37.9 months, and median PFS was 68 versus 45.5 versus 30.2 versus 19.9 months, respectively. The score was validated in an independent validation set (N = 3,771, of whom 1,214 were with complete data to calculate R2-ISS) maintaining its prognostic value.CONCLUSIONThe R2-ISS is a simple prognostic staging system allowing a better stratification of patients with intermediate-risk NDMM. The additive nature of this score fosters its future implementation with new prognostic variables
    corecore