46 research outputs found

    Eosinophils in glioblastoma biology

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review

    durolib 1.0.0

    No full text
    First release available through anaconda/durack

    Long-term sea-level change revisited: the role of salinity

    No full text
    Of the many processes contributing to long-term sea-level change, little attention has been paid to the large-scale contributions of salinity-driven halosteric changes. We evaluate observed and simulated estimates of long-term (1950-present) halosteric patterns and compare these to corresponding thermosteric changes. Spatially coherent halosteric patterns are visible in the historical record, and are consistent with estimates of long-term water cycle amplification. Our results suggest that long-term basin-scale halosteric changes in the Pacific and Atlantic are substantially larger than previously assumed, with observed estimates and coupled climate models suggesting magnitudes of ∼25% of the corresponding thermosteric changes. In both observations and simulations, Pacific basin-scale freshening leads to a density reduction that augments coincident thermosteric expansion, whereas in the Atlantic halosteric changes partially compensate strong thermosteric expansion via a basin-scale enhanced salinity density increase. Although regional differences are apparent, at basin-scales consistency is found between the observed and simulated partitioning of halosteric and thermosteric changes, and suggests that models are simulating the processes driving observed long-term basin-scale steric changes. Further analysis demonstrates that the observed halosteric changes and their basin partitioning are consistent with CMIP5 simulations that include anthropogenic CO _2 forcings ( Historical ), but are found to be inconsistent with simulations that exclude anthropogenic forcings ( HistoricalNat )

    pcmdi_metrics: Version 1.1.1

    No full text
    Self contained packages to run PCMDI Metric
    corecore