321 research outputs found

    TFOS Lifestyle: Impact of nutrition on the ocular surface: TFOS Lifestyle Workshop: Nutrition report

    Full text link
    Nutrients, required by human bodies to perform life-sustaining functions, are obtained from the diet. They are broadly classified into macronutrients (carbohydrates, lipids, and proteins), micronutrients (vitamins and minerals) and water. All nutrients serve as a source of energy, provide structural support to the body and/or regulate the chemical processes of the body. Food and drinks also consist of non-nutrients that may be beneficial (e.g., antioxidants) or harmful (e.g., dyes or preservatives added to processed foods) to the body and the ocular surface. There is also a complex interplay between systemic disorders and an individual's nutritional status. Changes in the gut microbiome may lead to alterations at the ocular surface. Poor nutrition may exacerbate select systemic conditions. Similarly, certain systemic conditions may affect the uptake, processing and distribution of nutrients by the body. These disorders may lead to deficiencies in micro- and macro-nutrients that are important in maintaining ocular surface health. Medications used to treat these conditions may also cause ocular surface changes. The prevalence of nutrition-related chronic diseases is climbing worldwide. This report sought to review the evidence supporting the impact of nutrition on the ocular surface, either directly or as a consequence of the chronic diseases that result. To address a key question, a systematic review investigated the effects of intentional food restriction on ocular surface health; of the 25 included studies, most investigated Ramadan fasting (56%), followed by bariatric surgery (16%), anorexia nervosa (16%), but none were judged to be of high quality, with no randomized-controlled trials

    Challenges and approaches in assessing the interplay between microorganisms and their physical micro-environments

    Get PDF
    © 2020 The Author(s) Spatial structure over scales ranging from nanometres to centimetres (and beyond) varies markedly in diverse habitats and the industry-relevant settings that support microbial activity. Developing an understanding of the interplay between a structured environment and the associated microbial processes and ecology is fundamental, but challenging. Several novel approaches have recently been developed and implemented to help address key questions for the field: from the use of imaging tools such as X-ray Computed Tomography to explore microbial growth in soils, to the fabrication of scratched materials to examine microbial-surface interactions, to the design of microfluidic devices to track microbial biofilm formation and the metabolic processes therein. This review discusses new approaches and challenges for incorporating structured elements into the study of microbial processes across different scales. We highlight how such methods can be pivotal for furthering our understanding of microbial interactions with their environments

    Global Law as Intercontextuality and as Interlegality

    Get PDF
    Since the 1990s the effects of globalization on law and legal developments has been a central topic of scholarly debate. To date, the debate is however marked by three substantial deficiencies which this chapter seeks to remedy through a reconceptualization of global law as a law of inter-contextuality expressed through inter-legality and materialized through a particular body of legal norms which can be characterized as connectivity norms. The first deficiency is a historical and empirical one. Both critics as well as advocates of ‘non-state law’ share the assumption that ‘law beyond the state’ and related legal norms have gained in centrality when compared with previous historical times. While global law, including both public and private global governance law as well as regional occurrences such as EU law, has undergone profound transformations since the structural transformations which followed the de-colonialization processes of the mid-twentieth century, we do not have more global law relatively to other types of law today than in previous historical times. The second deficiency is a methodological one. The vast majority of scholarship on global law is either of an analytical nature, drawing on insights from philosophy, or empirically observing the existence of global law and the degree of compliance with global legal norms at a given moment in time. While both approaches bring something to the table they remain static approaches incapable of explaining and evaluating the transformation of global law over time. The third deficiency is a conceptual-theoretical one. In most instances, global law is understood as a unitary law producing singular legal norms with a planetary reach, or, alternatively, a radical pluralist perspective is adopted dismissing the existence of singular global norms. Both of these approaches however misapprehend the structural characteristics, function and societal effects of global law. Instead a third positon between unitary and radical pluralist perspectives can be adopted through an understanding of global law and its related legal norms as a de-centred kind of inter-contextual law characterised by inter-legality

    Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline

    Get PDF
    Background: There are numerous systems and techniques to measure the growth of plant roots. However, phenotyping large numbers of plant roots for breeding and genetic analyses remains challenging. One major difficulty is to achieve high throughput and resolution at a reasonable cost per plant sample. Here we describe a cost-effective root phenotyping pipeline, on which we perform time and accuracy benchmarking to identify bottlenecks in such pipelines and strategies for their acceleration. Results: Our root phenotyping pipeline was assembled with custom software and low cost material and equipment. Results show that sample preparation and handling of samples during screening are the most time consuming task in root phenotyping. Algorithms can be used to speed up the extraction of root traits from image data, but when applied to large numbers of images, there is a trade-off between time of processing the data and errors contained in the database. Conclusions: Scaling-up root phenotyping to large numbers of genotypes will require not only automation of sample preparation and sample handling, but also efficient algorithms for error detection for more reliable replacement of manual interventions

    Morphological and Functional Changes in the Retina after Chronic Oxygen-Induced Retinopathy

    Get PDF
    The mouse model of oxygen-induced retinopathy (OIR) has been widely used for studies of retinopathy of prematurity (ROP). This disorder, characterized by abnormal vascularization of the retina, tends to occur in low birth weight neonates after exposure to high supplemental oxygen. Currently, the incidence of ROP is increasing because of increased survival of these infants due to medical progress. However, little is known about changes in the chronic phase after ROP. Therefore, in this study, we examined morphological and functional changes in the retina using a chronic OIR model. Both the a- and b-waves in the OIR model recovered in a time-dependent manner at 4 weeks (w), 6 w, and 8 w, but the oscillatory potential (OP) amplitudes remained depressed following a return to normoxic conditions. Furthermore, decrease in the thicknesses of the inner plexiform layer (IPL) and inner nuclear layer (INL) at postnatal day (P) 17, 4 w, and 8 w and hyperpermeability of blood vessels were observed in conjunction with the decrease in the expression of claudin-5 and occludin at 8 w. The chronic OIR model revealed the following: (1) a decrease in OP amplitudes, (2) morphological abnormalities in the retinal cells (limited to the IPL and INL) and blood vessels, and (3) an increase in retinal vascular permeability via the impairment of the tight junction proteins. These findings suggest that the experimental animal model used in this study is suitable for elucidating the pathogenesis of ROP and may lead to the development of potential therapeutic agents for ROP treatment

    Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents

    Get PDF
    Rapid progress has been made in realizing battery electrode materials with high capacity and long-term cyclability in the past decade. However, low first-cycle Coulombic efficiency as a result of the formation of a solid electrolyte interphase and Li trapping at the anodes, remains unresolved. Here we report LixSi-Li2O core-shell nanoparticles as an excellent prelithiation reagent with high specific capacity to compensate the first-cycle capacity loss. These nanoparticles are produced via a one-step thermal alloying process. LixSi-Li2O core-shell nanoparticles are processible in a slurry and exhibit high capacity under dry-air conditions with the protection of a Li2O passivation shell, indicating that these nanoparticles are potentially compatible with industrial battery fabrication processes. Both Si and graphite anodes are successfully prelithiated with these nanoparticles to achieve high first-cycle Coulombic efficiencies of 94% to 4100%. The LixSi-Li2O core-shell nanoparticles enable the practical implementation of high-performance electrode materials in lithium-ion batteries.open6

    Rod and Cone Pathway Signalling Is Altered in the P2X7 Receptor Knock Out Mouse

    Get PDF
    The P2X7 receptor (P2X7-R) is expressed in the retina and brain and has been implicated in neurodegenerative diseases. However, whether it is expressed by neurons and plays a role as a neurotransmitter receptor has been the subject of controversy. In this study, we first show that the novel vesicular transporter for ATP, VNUT, is expressed in the retina, verifying the presence of the molecular machinery for ATP to act as neurotransmitter at P2X7-Rs. Secondly we show the presence of P2X7-R mRNA and protein in the retina and cortex and absence of the full length variant 1 of the receptor in the P2X7-R knock out (P2X7-KO) mouse. The role of the P2X7-R in neuronal function of the retina was assessed by comparing the electroretinogram response of P2X7-KO with WT mice. The rod photoreceptor response was found to be similar, while both rod and cone pathway post-photoreceptor responses were significantly larger in P2X7-KO mice. This suggests that activation of P2X7-Rs modulates output of second order retinal neurons. In line with this finding, P2X7-Rs were found in the outer plexiform layer and on inner retinal cell classes, including horizontal, amacrine and ganglion cells. The receptor co-localized with conventional synapses in the IPL and was expressed on amacrine cells post-synaptic to rod bipolar ribbon synapses. In view of the changes in visual function in the P2X7-KO mouse and the immunocytochemical location of the receptor in the normal retina, it is likely the P2X7-R provides excitatory input to photoreceptor terminals or to inhibitory cells that shape both the rod and cone pathway response
    corecore