11 research outputs found

    Diversity and distribution of Diplodia spp. – causative agent of black canker on pome fruit trees – in Germany

    Get PDF
    Der Schwarze Rindenbrand, der von Pilzen aus der Gattung Diplodia hervorgerufen wird, stellt eine zunehmende Bedrohung für den Kernobstanbau in Deutschland dar. Um die Verbreitung der Erkrankung im Bundesgebiet zu ermitteln, wurden in einem nicht repräsentativen Monitoring 423 Rindenproben mit verdächtigen Symptomen aus allen Bundesländern untersucht. In 62 % der untersuchten Proben waren Pilze aus der Gattung Diplodia zu isolieren, wobei die Art D. bulgarica mit 56,6 %, gefolgt von D. seriata mit 28,3 % das Diplodia-Artenspektrum dominiert haben. D. malorum (7,8 %), D. mutila (4,9 %), D. juglandis (1,6 %) und D. intermedia (0,8 %) traten dagegen relativ selten auf, wobei die beiden letztgenannten Arten Erstnachweise an Apfel in Deutschland sind.Black canker, caused by fungi of the genus Diplodia, poses an increasing threat to pome fruit production in Germany. In order to determine the spread of the disease in Germany, 423 bark samples with suspicious symptoms from all federal states were examined in a non-representative monitoring. In 62% of the samples examined, fungi of the genus Diplodia were isolated, with the species D. bulgarica dominating the Diplodia species spectrum with 56.6%, followed by D. seriata with 28.3%. D. malorum (7.8%), D. mutila (4.9%), D. juglandis (1.6%) and D. intermedia (0.8%), on the other hand, took up only a small part of the Diplodia species spectrum, with the latter two species being first records on apple in Germany

    Diagnosis of quarantine organisms at the JKI in the National Reference Laboratory for organisms harmful to plants

    Get PDF
    Dem JKI wurde im April 2019 durch das Bundesministerium für Ernährung und Landwirtschaft (BMEL) die Funktion des nationalen Referenzlaboratoriums (NRL) für Schadorganismen der Pflanzen zugewiesen. Mit dieser Funktion des NRL für Deutschland sind bestimmte Zuständigkeiten und Aufgaben verbunden, die in der EU-Verordnung 2017/625 (EU, 2017) geregelt sind. Dazu gehören auch Referenzuntersuchungen bzw. die Diag­nose von Quarantäneschadorganismen (QSO). Das NRL stellt eine übergeordnete Einheit innerhalb des JKI dar. Durch insgesamt 14 Prüflabore der JKI-Institute für Pflanzenschutz in Ackerbau und Grünland (A), nationale und internationale Angelegenheiten der Pflanzengesundheit (AG), Epidemiologie und Pathogendiagnostik (EP), Pflanzenschutz in Gartenbau und Forst (GF), Pflanzenschutz in Obst- und Weinbau (OW) wird die Referenzfunktion bei der Diagnose zu verschiedensten (Quarantäne)-Schadorganismen der Pathogengruppen Bakterien, Insekten, Nematoden, Pilze (einschließlich Oomyceten), Phytoplasmen und Viren wahrgenommen.In April 2019, the JKI was officially designated as the Natio­nal Reference Laboratory (NRL) for organisms harmful to plants by the Federal Ministry of Food and Agri­culture (BMEL). This function as NRL for Germany is associated with certain responsibilities and tasks, which are specified in the EU Regulation 2017/625 (EU, 2017). This also includes reference tests and the diagnosis of quarantine pests, respectively. The NRL represents a super­ordinate unit inside JKI. A total of 14 test laboratories from different JKI institutes, namely for Plant Protection in Field Crops and Grassland (A), for National and International Plant Health (AG), for Epidemiology and Pathogen Diagnostics (EP), Plant Protection in Horti­culture and Forests (GF), and for Plant Protection in Fruit Crops and Viticulture (OW) are in charge to carry out a reference function in the diagnosis of (quarantine) pests in the pathogen groups of bacteria, fungi (including oomycetes), insects, nematodes, phytoplasma und viruses

    Palm Foliage as Pathways of Pathogenic Botryosphaeriaceae Fungi and Host of New Lasiodiplodia Species from Mexico

    No full text
    Tropical palm foliage is increasingly imported to satisfy the steady growing demand in European floristry. This palm foliage presumably carries along diverse fungi whose taxonomic and functional diversity have not been addressed so far. The present study investigated Botryosphaeriaceae fungi associated with the foliage of palm species Chamaedorea elegans, C. metallica, C. seifrizii, Dypsis lutescens and Lodoicea maldivica imported from Mexico. Five species were identified using combined morphological characterisation and multilocus phylogenetic analyses based on ITS, TEF-1α, TUB2 and RPB2. In addition to Endomelanconiopsis endophytica, Lasiodiplodia brasiliensis and L. euphorbicola, two new species, namely, L. lodoiceae sp. nov. and L. mexicanensis sp. nov, are proposed. Apart from E. endophytica, mostly known as endophyte, L. brasiliensis and L. euphorbicola are responsible for different rot diseases and the dieback of important tropical crop plants. In pathogenicity tests on the temperate pome fruits apple (Malus domestica) and pear (Pyrus communis), all six Botryosphaeriaceae species induced necrotic lesions at different degrees of severity, with highest the aggressiveness from L. euphorbicola and L. mexicanensis on apple and from L. mexicanensis on pear. The results indicate that tropical palm foliage can be a pathway of potentially pathogenic fungi that may give rise to concerns with regard to plant health in the destination countries

    Geastrum pleosporus sp. nov., a new species of Geastraceae identified by morphological and molecular phylogenetic data

    Get PDF
    [EN] An unusual species of Geastrum was found growing on decayed wood debris and leaves of Triplochiton scleroxylon in the Mbalmayo Forest Reserve, Cameroon. The species morphologically resembles G. saccatum and G. fimbriatum in having sessile endosperidium partly enclosed by the saccate base of the exoperidium. Microscopically, it is characterized by and distinguished from all other known species of the genus, in having subsmooth, punctate to moderately verruculose, slightly thick- to distinctly thick-walled polymorphous, constricted to eight-shaped, mostly oblong, ovoid, cylindrical, elliptic to clubshaped basidiospores. G. pleosporus was studied from a collection of about fifteen basidiomata covering different stages of development. It is described as new based on morphological analyses and phylogenetic inferences made from large ribosomal DNA sequence alignments. Phylogenetic relationship of G. pleosporus is investigated. In parsimony analyses of partial sequences of the large subunit rDNA from selected Gasteromycetes species, G. pleosporus is closely related to G. saccatum within the strongly supported clade of Geastrum species. The cluster of G. pleosporus and G. saccatum is well supported in parsimony analysis of the dataset with Geastrum species and related taxa using parsimony and maximum likelihood analysis.Peer reviewe

    Considerations and consequences of allowing DNA sequence data as types of fungal taxa

    Get PDF
    Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.Peer reviewe
    corecore