11 research outputs found

    Using antiepileptic drugs in children : recent developments and recommendations

    Get PDF
    Epilepsy is one of the most common neurological disorders, with approximately 45 per 100,000 children developing new-onset epilepsy every year. Children are a vulnerable population with unique health needs and a correct diagnosis and thus correct treatment of epilepsy in children, particularly a diagnosis of early onset epilepsy, is important in order to ensure better quality of life, neurodevelopmental outcomes, cognition, education, improved level of function and future employment. Therapy with antiepileptic drugs (AEDs) aims to minimize the frequency of epileptic seizures with minimal side effects. The first generation AEDs (such as phenytoin, carbamazepine and valproic acid) are still widely used, although they are associated with serious side effects and pharmacokinetic problems (narrow therapeutic indices, nonlinear kinetics, and drug-drug interactions due to enzyme inhibition and enzyme induction properties). The novel AEDs (such as lamotrigine, levetiracetam, rufinamide, and zonisamide) have expanded the treatment options of epilepsy, however they are also associated with severe pharmacokinetic shortcomings, especially for paediatric populations. This educational article will discuss how the correct use of these drugs can lead to improved quality of life measures. This paper also provides an overview of ongoing research on the use of population pharmacokinetics in addressing the challenges paediatric populations offer to drug and dose individualisation.peer-reviewe

    International consensus recommendations on the diagnostic work-up for malformations of cortical development

    Get PDF
    Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk

    International consensus recommendations on the diagnostic work-up for malformations of cortical development

    Get PDF
    Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. In this Consensus Statement, the international MCD network Neuro-MIG provides recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs. Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk

    Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy

    No full text
    Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 affected individuals. We identified recessive mutations in EPG5 (previously KIAA1632), indicating a causative role in Vici syndrome. EPG5 is the human homolog of the metazoan-specific autophagy gene epg-5, encoding a key autophagy regulator (ectopic P-granules autophagy protein 5) implicated in the formation of autolysosomes. Further studies showed a severe block in autophagosomal clearance in muscle and fibroblasts from individuals with mutant EPG5, resulting in the accumulation of autophagic cargo in autophagosomes. These findings position Vici syndrome as a paradigm of human multisystem disorders associated with defective autophagy and suggest a fundamental role of the autophagy pathway in the immune system and the anatomical and functional formation of organs such as the brain and hear

    Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response.

    No full text
    Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Improved diagnosis of rare disease patients through systematic detection of runs of homozygosity

    Get PDF
    Autozygosity is associated with an increased risk of genetic rare disease, thus being a relevant factor for clinical genetic studies. More than 2400 exome sequencing data sets were analyzed and screened for autozygosity on the basis of detection of >1 Mbp runs of homozygosity (ROHs). A model was built to predict if an individual is likely to be a consanguineous offspring (accuracy, 98%), and probability of consanguinity ranges were established according to the total ROH size. Application of the model resulted in the reclassification of the consanguinity status of 12% of the patients. The analysis of a subset of 79 consanguineous cases with the Rare Disease (RD)-Connect Genome-Phenome Analysis Platform, combining variant filtering and homozygosity mapping, enabled a 50% reduction in the number of candidate variants and the identification of homozygous pathogenic variants in 41 patients, with an overall diagnostic yield of 52%. The newly defined consanguinity ranges provide, for the first time, specific ROH thresholds to estimate inbreeding within a pedigree on disparate exome sequencing data, enabling confirmation or (re)classification of consanguineous status, hence increasing the efficiency of molecular diagnosis and reporting on secondary consanguinity findings, as recommended by American College of Medical Genetics and Genomics guidelines.Supported by European Union projects RD-Connect, Solve-RD, and European Joint Programme of Rare Diseases (EJP-RD) grants FP7 305444, H2020 779257, and H2020 825575; Instituto de Salud Carlos III grants PT13/0001/0044 and PT17/0009/0019; Instituto Nacional de Bioinformática; ELIXIR Implementation Studies; European Union projects BBMRI-LPC EU FP7 313010, NeurOmics EU FP7 305121, and Undiagnosed Rare Disease Program of Catalonia (Departament de Salut, Generalitat de CatalunyaSLT002/16/00174); Canadian Institutes of Health Research Foundation grant FDN-167281 (H.L.); the European Research Council309548 (R.H.); the Wellcome Investigator Award 109915/Z/15/Z (R.H.); the Medical Research Council (United Kingdom) MR/N025431/1 (R.H.); the Wellcome Trust Pathfinder Scheme 201064/Z/16/Z (R.H. and H.L.); the Newton Fund (United Kingdom/Turkey) MR/N027302/1 (R.H. and H.L.); the Spanish Ministry of Economy, Industry and Competitiveness to the European Molecular Biology Laboratory (EMBL) partnership; the Centro de Excelencia Severo Ochoa; the Centres de Recerca de Catalunya (CERCA) Program/Generalitat de Catalunya; the Generalitat de Catalunya through the Department of Health and Department of Business and Knowledge; the Spanish Ministry of Economy, Industry and Competitiveness with funds from the European Regional Development Fund corresponding to the 2014 to 2020 Smart Growth Operating Program

    Clinical and Molecular Phenotype of Aicardi-Goutières Syndrome

    Get PDF
    Aicardi-Goutières syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3′→5′ exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation–positive patients were known to have died (P=.001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified
    corecore