
Abnormal formation of the cerebral cortex in utero 
leads to neurodevelopmental disorders known as mal
formations of cortical development (MCDs). Although 
individually rare, as a group MCDs represent a major 
cause of intellectual disability, autism, epilepsy and cer
ebral palsy1,2. The last update of the developmental and 
genetic classification for MCDs, which was published in 
2012, includes 200 clinical entities and classifies them 
into three major groups: malformations secondary 
to abnormal neuronal and glial cell proliferation and 
apoptosis, including microcephaly and macrocephaly; 
neuro nal migration disorders, represented by hetero
topia, lissencephaly and cobblestone malformation 

(COB); and malformations of postmigrational cortical 
organization and connectivity, represented by condi
tions such as polymicrogyria, schizencephaly and focal 
cortical dysplasia (FCD)3.

Many MCDs are caused by an underlying genetic 
defect. Rapid advances in molecular genetics and neuro
imaging techniques in recent years have substantially 
increased the number of recognized MCD forms and 
their associated genes, and have highlighted the con
siderable genetic heterogeneity associated with these 
disorders1. Nextgeneration sequencing (NGS) of a selec
tion of genes related to a phenotype (gene panel), the 
coding exons of the human genes (exome sequencing) 
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or the genome of an individual (genome sequencing) 
has enabled rapid sequencing of large numbers of genes.

Even following intensive diagnostic assessments, 
many individuals with an MCD remain without a 
molecular diagnosis4–6. The complex nature and high 
degree of clinical and genetic heterogeneity of MCDs 
demand highly specialized and multidisciplinary exper
tise. However, MCD experts usually work individually 
or in small multidisciplinary teams. Currently, com
prehensive guidelines for diagnosis and management 
are lacking, adding to the variability in the diagnostic 
approach between different centres. The disease course 
and longterm clinical outcome are often difficult to pre
dict at an early stage, and medical management is rarely 
evidencebased. These challenges highlight the need 
for an expertdriven multidisciplinary effort to better 
understand these disorders. The availability of carefully 
curated MCD gene panels to the wider medical commu
nity will enable accurate molecular diagnosis in a larger 

number of patients without long delays or unnecessary 
investigations.

We established the international multidisciplinary 
network NeuroMIG with the aim of disseminating 
knowledge to the broad medical community, improving 
the diagnosis and management of MCDs and accelerat
ing research into MCDs7. In this article, we first review 
the clinical presentation and aetiology of the main MCD 
types. On the basis of a critical review of the literature, 
expert surveys and discussions, we then present a consen
sus statement on the clinical and molecular investigations 
in patients with MCDs, including specific recommenda
tions on clinical workup, molecular diagnostic methods 
and alternative strategies in undiagnosed patients.

Methods
This article represents a consensus document based on 
three facetoface expert meetings within the NeuroMIG 
network that were held in St Julians, Malta, from 21 
to 23 February 2018, in Lisbon, Portugal, on 13 and 
14 September 2018, and in Rehovot, Israel, on 17 March 
2019. The meetings were funded by the European 
Cooperation in Science & Technology (COST Action 
CA16118). Two NeuroMIG working groups, WG1 and 
WG3, took the lead in preparing the draft, although a 
larger group within the network was invited to participate 
in the Delphi consensus procedure and comment on the 
second draft. The final version of the consensus docu
ment was reviewed by the drafting team and circulated 
among all COST network members before submission.

PubMed was systematically queried for pheno
types, genes and mutation rates associated with MCDs, 
using the key words “microcephaly”, “megalencephaly”, 
“lissencephaly”, “polymicrogyria”, “schizencephaly”, 
“cobblestone malformation”, “focal cortical dysplasia” 
and “heterotopia”. The most recent search was performed 
on 31 October 2019.

From the MCD expert laboratories within the 
NeuroMIG network, headed by M.W., K.S., U.H., E.P. 
and N.D.D., we collected data regarding gene panels, 
enrichment strategies and diagnostic yield. Using the 
data obtained as described above, we compiled lists of 
genes associated with the various MCD subtypes and 
defined a diagnostic strategy for patients with MCDs. 
The gene list was curated — that is, checked, cor
rected and completed — by all authors on the basis 
of longstanding personal experience gained through 
molecular diagnostics in patients with MCDs. The first 
draft was finalized before the second meeting. During 
the first round of voting, 21 of the authors voted on 101 
recommendation statements. Agreement (>90% positive 
votes) was reached for 89 statements, and the remain
ing 12 were revised according to the reasons provided 
for disagreement. The second round of voting involved 
42 experts. At the end of the process, 94 recommenda
tions found >90% consensus. In addition, five statements 
were agreed on by 80–90%, two statements by 75–80% 
and one statement by 70–75% of the participants 
(Supplementary Table 1). Recommendations with con
sensus <80% were excluded from the recommendations 
section below. Unless specified otherwise, we report on 
recommendation statements with >90% consensus.
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Clinical presentation of MCDs
MCDs can be isolated or associated with a wide variety 
of neurological and extraneurological features, includ
ing other birth defects and facial dysmorphism. The age 
at clinical referral and the severity of neurological defi
cits vary substantially between affected individuals. The 
most common presenting features are epilepsy, develop
mental delay and/or motor abnormalities of tone, move
ment and posture1. These features are listed in relation to 
the typical ages of presentation in Box 1.

Main MCD types
In this section, we provide an overview of the most 
common types of MCD and their aetiologies. Different 
descriptions have been introduced in the literature over 
the years depending on the study design and the med
ical background of the research group (for example, 
neurologists, radiologists, geneticists or pathologists). 
TaBle 1 summarizes the consensus definitions that 
were agreed on by our working group. These defini
tions are used throughout the text, and brain imaging 
examples are provided in Fig. 1. The descriptions are 
specific to each term and do not consider the presence 
of abnormalities of other brain structures, which often 
coexist with MCD. Each MCD type can be further clas
sified on the basis of morphology, topography, severity 
gradient and involvement of other brain structures1. 
A detailed paper on the MCD neuroimaging features 
has been published separately by representatives from 
the NeuroMIG network8.

Microcephaly
Microcephaly is defined as a significant reduction in the 
occipitofrontal circumference (OFC) compared with 
controls matched for age and sex. Microcephaly is the 
most common MCD and is present in 15% of children 
referred for evaluation of developmental disabilities9. 
The relevant degree of reduction differs throughout 
the literature, being set at 2–3 s.d. below the mean9–12. 
Strictly speaking, microcephaly is a clinical finding 
rather than a disease; however, it provides a reliable 
estimation of the brain volume10. The final brain size 
is the result of a complex process of neural stem cell 
proliferation, migration, and ongoing organization, 
synaptogenesis and apoptosis11. Microcephaly is classed 
as congenital if present at birth (primary microcephaly) 
or postnatal if it develops after birth (secondary micro
cephaly)10,13,14. These two groups also have different 
molecular aetiologies11. Microcephaly can present with 
a normal or simplified gyral pattern, or with additional, 
more complex brain abnormalities11. The clinical out
come cannot be predicted by head size alone and largely 
depends on the underlying cause and the appearance of 
the brain on MRI.

Macrocephaly and megalencephaly
Macrocephaly is defined as an OFC ≥2 s.d. above the 
mean, whereas megalencephaly refers to an abnormally 
large brain size1. Macrocephaly has a wide variety of 
causes besides megalencephaly, including hydroceph
alus and increased skull thickness. Mild megalen
cephaly (2–3 s.d. above the mean) with an otherwise 

structurally normal brain can be seen in typically devel
oping children, often in the setting of benign familial 
macrocephaly15. However, megalencephaly can point 
to an underlying neurodevelopmental or generalized 
overgrowth disorder.

Periventricular nodular heterotopia
The term neuronal heterotopia refers to groups of 
neurons in an abnormal location, and periventricular 
nodular heterotopia (PVNH) describes nodular masses 
of grey matter located along the ventricular walls pro
truding into the ventricle1. PVNH can occur in isola
tion or together with other brain or body malformations 
and is not rare: in one study, PVNH was observed in 
0.48% of the general paediatric population16. The nod
ules can occur unilaterally or bilaterally, and should be 
further defined according to their number and location 
(for example, involving the frontal or temporal and/or 
occipital horns of the lateral ventricles).

Box 1 | Common presentation of MCD

Fetal
•	reduced fetal movements

•	Polyhydramnios

•	ultrasound and/or Mri abnormalities

At birth
•	Microcephaly or macrocephaly

•	Dysmorphic features

•	Congenital abnormalities

•	abnormal muscle tone

•	Feeding difficulties

•	Breathing difficulties

•	Cranial ultrasound, Mri and/or Ct abnormalities

Infancy
•	Global developmental delay

•	Hypotonia or hypertonia

•	Feeding difficulties

•	Postnatal microcephaly or macrocephaly

•	Cerebral palsy

•	epilepsy including infantile spasms

•	Mri and/or Ct abnormalities

Childhood
•	Cerebral palsy

•	seizures

•	speech delay

•	Cognitive delay

•	Drooling and/or congenital suprabulbar paresis

•	visual defects

•	Ocular motor apraxia

•	Mri and/or Ct abnormalities

Adolescence, adulthood
•	epilepsy

•	intellectual disability

•	Hypotonia or hypertonia

•	Mri and/or Ct abnormalities
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PVNH is associated with numerous different copy 
number variations (CNVs) and single gene variants, and 
can be part of a complex syndromic disorder.

Lissencephaly spectrum
The lissencephaly spectrum encompasses agyria, pachy
gyria and subcortical band heterotopia (SBH)17. Agyria 
and pachygyria are characterized by an abnormal gyral 
pattern with absent gyri (agyria) or broad gyri (pachy
gyria) in combination with an abnormally thick cortex18. 
SBH describes a band of grey matter separated from the 
cortex and lateral ventricles by zones of white matter18. 
In rare cases, pachygyria and SBH can cooccur in the 
same brain, with a typical pattern of frontal pachygyria 
and posterior SBH19. Microlissencephaly represents a 
separate subgroup and is defined as a combination of 
lissencephaly (usually in the form of agyria or pachy
gyria) with severe congenital microcephaly (OFC at 
birth ≥3 s.d. below the mean)20.

Subcortical heterotopia
Subcortical heterotopia (SUBH) refers to brain malfor
mations with clusters of neurons located within the white 
matter, between the cortex and lateral ventricles21. The 
wellrecognized and aforementioned PVNH and SBH 
have distinct imaging patterns and are classified sepa
rately. Multiple terms have been used to describe this type 
of malformation, including giant, curvilinear, nodular, 
focal and massive heterotopias21. In 2019, a group within 
the NeuroMIG network provided the first framework 

for an imaging classification of SUBH that encompasses 
five groups further subdivided into specific entities21.

Cobblestone malformation
COB is recognized as an undersulcated, irregular and 
‘pebbled’ cerebral surface, with a moderately thick 
cortex22,23. This malformation is caused by defects of the 
pial limiting membrane with resulting neuronal overmi
gration from the cortical plate into the leptomeninges3,24. 
COB often cooccurs with eye, muscle and addi
tional brain malformations within the spectrum of the 
αdystroglycanopathies, with Walker–Warburg syndrome 
at the most severe end25.

COB was originally described as lissencephaly type 2  
but this term has now been abandoned26. In addition, 
COB is often confused with polymicrogyria27. The strict 
differentiation of COBrelated and polymicrogyria 
related genes in the literature remains difficult, as sev
eral conditions characterized by COB were reported 
as polymicrogyriaassociated disorders (for example, 
GPR56associated frontoparietal ‘polymicrogyria’ and 
CHIME syndrome).

Polymicrogyria
Polymicrogyria is one of the most frequent types of MCD 
and is also one of the most heterogeneous in aetiology1. 
Polymicrogyria is defined as an excessive number of 
abnormally small cerebral gyri with cortical overfold
ing, an irregular, pebbled cortical surface and a stippled 
grey–white matter boundary28.

Table 1 | Consensus definitions of the main MCD types

Phenotype HPo ID Description

Microcephaly HP:0000252 A significant reduction in OFC by ≥2 s.d. acompared with controls matched for age and sex9,10

Megalencephaly HP:0001355 A significant increase in OFC, and specifically brain size, by ≥3 s.d. compared with controls matched for  
age and sexb

Periventricular nodular 
heterotopia (PVNH)

HP:0032388 Grey matter nodules along the ventricular walls1

Lissencephaly spectrum HP:0001339 Includes agyria, pachygyria and subcortical band heterotopia

Agyria, pachygyria HP:0031882, 
HP:0001302

Abnormal gyral pattern with absent or broad gyri in combination with an abnormally thick cortex18

Subcortical band 
heterotopia (SBH)

HP:0032409 A band of grey matter separated from the cortex and lateral ventricles by zones of white matter18

Cobblestone 
malformation (COB)

HP:0007260 An irregular and ‘pebbled’ cerebral surface with moderately thick cortex and jagged grey–white matter 
border with frequent vertical (perpendicular to the cortex–white matter border) striations22,23

Polymicrogyria HP:0002126 An excessive number of abnormally small cerebral gyri with cortical overfolding, irregular ‘pebbled’ 
cortical surface and a ‘stippled’ grey–white matter boundary28

Schizencephaly HP:0010636 A full-thickness cerebral cleft lined with grey matter, which extends from the ventricular surface to the  
pial surface174

Focal cortical dysplasia 
(FCD)

HP:0032046 Cortical dyslamination, with or without abnormal cell types (dysmorphic neurons and balloon cells).  
Other features can include gyral and/or sulcal irregularities; increased cortical thickness; blurring of the 
cortex–white matter junction; and white matter abnormalities, such as increased signal on T2-weighted 
images or a radially oriented ‘transmantle sign’ of T2 hyperintensity extending from the abnormal cortex  
to the lateral ventricle171

Dysgyria HP:0032398 A cortex of variable thickness and a smooth grey–white boundary but with an abnormal gyral pattern 
characterized by irregularities of sulcal depth and or orientation30,31. This term is only used to characterize 
cortical malformations that do not meet the classic features of any of the abovementioned subtypes

Examples of imaging findings in these conditions are provided in Fig. 1. HPO ID, Human Phenotype Ontology identifier; MCD, malformation of cortical development. 
aSome studies define microcephaly as occipitofrontal circumference (OFC) ≥3 s.d. below the mean, referring to OFC 2–3 s.d. below the mean as borderline microcephaly. 
bMegalencephaly specifically refers to a brain size that is ≥3 s.d. above the mean and is primarily a developmental brain disorder, whereas macrocephaly (defined as an 
OFC ≥3 s.d. above the mean) has a wide variety of causes besides megalencephaly, including ventriculomegaly, hydrocephalus and increased skull thickness.
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As highlighted in the previous section, polymicro
gyria can be difficult to differentiate from COB, and 
might also be confused with dysgyria or pachygyria. 
Highresolution imaging can aid the differentiation of 

these conditions, as it can show microgyri, microsulci 
and stippling of the grey–white matter junction — a spe
cific feature of polymicrogyria that is not seen in other 
MCDs1. Of note, the Sylvian fissures, which are best 

d   Megalencephalyc   Primary microcephalyb   Normal brain (T2)

i   Polymicrogyria j   Schizencephaly k   Dysgyria l   Focal cortical dysplasia

e   Periventricular nodular
      heterotopia g   Subcortical band heterotopiaf   Lissencephaly h   Cobblestone malformation

*

* *

*

a   Normal brain (T1)

Fig. 1 | MrI scans showing common malformations of cortical 
development. The brain was scanned in the axial plane unless otherwise 
stated. a | Normal brain on T1-weighted images. b | Normal brain on 
T2-weighted images. c | Primary microcephaly with a small brain. 
d | Abnormally large brain (megalencephaly) with abnormal appearance 
of the perisylvian cortex (arrows point to small gyri suggestive of 
polymicrogyria). e | Bilateral nodular heterotopia (arrows) situated along the 
ventricular walls. f | Lissencephaly spectrum with agyria–severe pachygyria 
(arrows). g | Lissencephaly spectrum with subcortical band heterotopia visible 

as a thick band isointense to the cortex (asterisks). h | Generalized thickened 
cortex with broad gyri and white matter abnormalities consistent with  
cobblestone complex (arrows). i | Bilateral frontoparietal polymicrogyria  
with abnormally small gyri and shallow sulci (arrows). j | Coronal scan showing 
schizencephaly, characterized by a cleft lined by grey matter extending from 
the cortex to the ventricle (arrow). k | Abnormally oriented sulci of varying 
depth with normal cortical thickness (arrows). l | Focal cortical dysplasia with 
blurring of the grey–white matter boundary and hyperintensity of the white 
matter on T2-weighted imaging (arrow).
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viewed on sagittal imaging, should be closely scrutinized 
as polymicrogyria often affects these areas preferentially, 
with abnormal posterior extension and sulcal branching 
being observed28. Polymicrogyria is frequently seen in 
association with many other brain malformations and is 
sporadically described in various syndromic disorders. 
Polymicrogyria has been classified into six topographic 
patterns that are further divided into 13 morphological 
subtypes28. Moreover, at least six polymicrogyria syn
dromes have been defined on the basis of radiological 
and clinical features29.

Dysgyria
Dysgyria translates as abnormal gyration and can there
fore be applied to almost every type of MCD. However, 
this term was introduced to describe cortical malfor
mations that do not meet classic features of any of the 
abovementioned wellestablished MCD types. Dysgyria 
describes a cortex of variable thickness and an abnormal 
gyral pattern characterized by abnormalities of sulcal 
depth or orientation (for example, obliquely oriented 
sulci directed radially towards the centre of the cere
brum and narrow gyri separated by abnormally deep 
or shallow sulci)30,31. In the vast majority of cases, the 
term dysgyria describes an abnormal nonlissencephaly, 
nonpolymicrogyria cortex within the spectrum of 
tubulinopathies.

FCD and hemimegalencephaly
FCD is identified on brain imaging by focal irregular
ities of cortical morphology and thickness, blurring of 
the grey–white matter boundary, and white matter T2 
hyperintensity. Depending on the size of the lesion and 
the resolution of the brain imaging, FCD can be missed 
on MRI. Smaller lesions are often only identified on 
neuropathological studies after surgery for epilepsy. 
FCD type II is characterized by the presence of dysplas
tic, megalocytic neurons, a feature that is also present 
in hemimegalencephaly. Balloon cells are also observed 
in FCD IIB and hemimegalencephaly32. The size of the 
lesion varies from submicroscopic involvement of one or 
several sulci (FCD) to a larger area involving a lobe (par
tial hemimegalencephaly) or involvement of an entire 
cerebral hemisphere (classic hemimegalencephaly)32. In 
the latter condition, the affected hemisphere is visibly 
enlarged. In hemimegalencephaly, the lesion can extend 
to nonbrain tissue, and clinicians should look out for 
skin abnormalities and localized overgrowth of one or 
several body parts.

Molecular testing: current practice
Chromosomal testing
MCDs have been linked to a wide range of CNVs, 
as detected by chromosomal microarray analysis 
(CMA)1,33,34. Several CNVs are consistently associated 
with MCD, the most common of which are the 22q11 
and 1p36 deletions associated with polymicrogyria, 
the 17p13.3 deletion (encompassing LIS1 (also known 
as PAFAH1B1), YWHAE and other genes) that causes 
Miller–Dieker syndrome and isolated lissencephaly, 
and 6qter deletions associated with various brain mal
formations including polymicrogyria and PVNH33,35,36. 

A study published in 2019 reported a diagnostic yield 
of 36% when CMA was used in patients who had 
PVNH with or without other malformations, and 9% 
in a group with polymicrogyria only37. Another study 
did not show an increased burden of rare CNVs in 
people with polymicrogyria compared with healthy 
controls38. In patients with microcephaly, the yield was 
~5–7%13,39. In a large cohort of patients with lissenceph
aly (n = 811), Miller–Dieker syndrome was diagnosed in 
9% of cases40. Several MCDrelated genes frequently har
bour intragenic deletions or duplications, which might be 
identified by standard microarrays41–43.

Single gene testing
Single gene testing is being superseded by NGS gene 
panels, and we were only able to identify systematic 
studies for a small number of MCD types. The yield 
of single gene testing varies greatly depending on the 
MCD type and extension of the malformation. For 
SBH, the yield of molecular testing is high, with path
ogenic variants in DCX or LIS1 being found in 79% of 
patients (123 of 155)40. Pathogenic variants in FLNA are 
important aetiological factors for PVNH. The highest 
frequency is found in women with bilateral frontocentral 
PVNH, especially in combination with cerebellar hypo
plasia and/or mega cisterna magna, with a positive fam
ily history of PVNH44,45. The yield varies from 80–100% 
in female familial cases to 9–26% in sporadic cases44–46.

In a cohort of 113 patients with MCDs, a molecular 
diagnosis was established in 21 patients (19%) by tar
geted testing of one or more genes selected on the basis 
of the phenotype4. In a more recent study consisting of 
an Argentinian cohort of 38 patients with lissencephaly, 
SBH or PVNH, pathogenic variants were identified in 
36% of cases46.

Pathogenic variants of ASPM are the most common 
genetic cause of primary microcephaly, with a mutation 
rate of 10–40% depending on ethnicity and the presence 
or absence of consanguinity47,48. Among consanguineous 
families, alterations in ASPM and WDR62 accounted for 
>50% of cases of primary microcephaly49,50.

For COB, mutation detection rates vary considerably, 
depending on the age at diagnosis and clinical inclusion 
criteria. For the most severe prenatal manifestations, 
the detection rate was usually >60% when the six genes 
most commonly linked to dystroglycanopathy were 
analysed25.

Gene panels
Despite multiple publications reporting on the yield 
of gene panels in cohorts of patients with neurodevel
opmental disorders51–53, similar studies for MCDs are 
scarce. The only study that we identified reported on 
testing of a small gene panel (ten genes) in 158 individ
uals with brain malformations, including 30 individuals 
with SBH, 20 with megalencephaly, 61 with PVNH and 
47 with pachygyria. Causal pathogenic variants were 
found in 27 individuals (17%, range 10–30% depending 
on the phenotype)54.

Several genes encoding components of the PI3K–
AKT–mTOR pathway have been implicated in FCD, 
and targeted testing of PI3K–AKT–mTOR pathway 
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genes, using highly sensitive sequencing methods that 
allowed detection of lowfrequency brain somatic var
iants, produced diagnostic yields ranging from 12% to 
40%55–57. In a different cohort, a targeted NGS panel that 
included the most commonly mutated PI3K–AKT–
mTOR pathway genes uncovered PIK3CA pathogenic 
variants in 50 of 131 individuals (174 samples) with the 
megalencephaly–capillary malformation syndrome58.

Exome sequencing
One study investigated the yield of exome sequencing, 
combined with CMA, in 54 patients with various MCD 
types5. This approach yielded a definitive (9/16) or pre
sumptive (7/16) molecular diagnosis in 16 of 54 enrolled 
individuals (30%). Another study of 62 patients with 
microcephaly followed a similar approach and identified 
causative variants in 48% of the individuals39.

Neuro-MIG laboratories
We have also analysed the yield from the diagnostic lab
oratories within the NeuroMIG network. Targeted gene 
panels resulted in diagnostic yields of 15–37%, although 
wide variability was observed among the different clinical 
subtypes (TaBle 2). The combination of expert evaluation 
of MRI scans followed by targeted analysis of the most 
plausible causative variants can considerably increase the 
diagnostic yield. Substantiating this point, the availability 
of MRI scans resulted in an improved mutation detection 
rate of 37% in a mixed cohort of 117 patients with MCDs, 
compared with only 18% in a cohort of 784 patients 
analysed without previous expert reevaluation of MRI 
scans at the Human Genetics Center Regensburg (U.H., 
unpublished work). In the former cohort, the testing 
strategy was selected by the laboratory depending on 
the MRI pattern, and the approaches included single 
gene, panel and exome sequencing. A similar trend was 
noted in the Department of Clinical Genetics, Erasmus 
MC University Medical Center, Rotterdam, where the 
diagnostic yields from inhouse requests accompa
nied by expert MRI review by G.M.S.M. were almost 
double those from the tests ordered from other med
ical specialists outside the university hospital (M.W., 
unpublished work).

In utero infections
Prenatal infections can cause extensive damage to 
the fetal brain, including the cerebral cortex59–61. 
Cytomegalovirus (CMV) is one of the most frequent 
nongenetic causes of MCDs and is specifically asso
ciated with polymicrogyria, intracranial calcifications, 
white matter abnormalities and microcephaly1. In a 
cohort of 26 patients with bilateral polymicrogyria, six 
(31%) tested positive for CMV; however, it was unclear 
whether these patients were infected prenatally or 
postnatally62. In a larger group of 50 patients with poly
microgyria, six (12%) tested positive on Guthrie cards 
(W.B.D., unpublished work).

In one study of 41 newborn babies with symptomatic 
CMV, eight (19.5%) presented with microcephaly63. 
Not all CMVinfected individuals are symptomatic at 
birth, and neurological sequelae can develop later in 
life64. Other infectious agents, including rubella virus65, 

varicella zoster66 and herpes simplex virus61,67, can also 
cause microcephaly. In recent years, Zika virus has been 
associated with primary microcephaly and a spectrum 
of brain malformations68–74.

New recommendations
The NeuroMIG network recommends that a con
certed effort be made to reach an aetiological diagnosis 
in every individual with an MCD. The diagnosis serves 
several functions. First, it explains the cause of the mal
formation, ends the diagnostic odyssey and prevents 
further unnecessary investigations. Second, it provides 
information on prognosis and recurrence risk for the 
patient and family members4. Third, it aids the predic
tion of treatment outcomes; for example, the success 
rate for epilepsy surgery depends on the underlying 
genetic cause75. Fourth, it directs patient management 
(for example, antiviral treatment and screening for pro
gressive hearing loss in infants with congenital CMV 
infection76, cardiovascular surveillance in FLNArelated 
and ARFGEF2related PNVH77,78 or mTORC1 inhibition 
in patients with tuberous sclerosis complex (TSC))79. 
Fifth, it enables natural history studies80,81 and targeted 
research into personalized therapy and prevention82,83.

Imaging findings, such as generalized versus focal 
and bilateral versus unilateral malformations, cannot 
reliably distinguish genetic from nongenetic causes, and 
the diagnostic yield of targeted testing is determined to 
a large extent by the availability of a multidisciplinary 
expert evaluation. However, such an ideal setting can 
rarely be met in practice. Therefore, we have formu
lated a general diagnostic workflow that can be applied 
in most clinics to any individual with an MCD (Fig. 2). 
Lists of currently known MCDassociated genes are pre
sented in Supplementary Tables 2 and 3. These lists can 
assist variant interpretation and guide targeted testing if 
exome (or genome) sequencing is not available. These 
general recommendations should minimize the chance 
of missing a known causative variant. The workflow 
can be started when a person is first diagnosed with an 

Table 2 | Diagnostic yield across Neuro-MIg

MCD entity Diagnostic yield 
(%)a

Microcephalyb 18–20

Lissencephaly 75–81

Cobblestone malformation 75

Polymicrogyria 20

Periventricular nodular heterotopia 30–37

Total cohort (n = 737) 15–37

The data were collected during the Neuro-MIG network  
expert meeting in St Julians, Malta (21–23 February 2018)  
and represent the unpublished internal diagnostic yield after 
the introduction of next-generation sequencing in clinical 
routine. The diagnostic yield per malformation was not provided 
by every laboratory; data on cobblestone malformation and 
periventricular nodular heterotopia were only available  
from the Center for Human Genetics Regensburg, Germany 
(U.H., unpublished work). MCD, malformation of cortical 
development. aQuoted figures are for class 4 (likely pathogenic) 
and class 5 (definitely pathogenic) variants. bNote that 
diagnostic yield is increased in patients with microcephaly 
defined as 3 s.d. below the mean.
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MCD, although clinicians should check whether any of 
the investigations have already been performed.

For some MCD subtypes, the most costeffective 
strategy would be targeted gene analysis, but the success 
of this approach depends greatly on accurate pattern rec
ognition. The relevant subtypespecific patterns and aeti
ologies are outlined in the section ‘Phenotypespecific 
considerations’ below.

The correct interpretation of genetic test results 
requires detailed phenotypic analysis, including 
reevaluation of the brain MRI, to confirm that the 
identified single nucleotide variant (SNV) or CNV fully 
explains the phenotype. In the case of a negative result, 
the reevaluation should help determine whether the 
malformation was correctly classified, whether additional 

diagnostic testing, such as deep sequencing or analysis 
of a different tissue, might be helpful, and whether a 
nongenetic cause is more likely.

We recommend that a final clinical interpretation is 
done by a qualified medical geneticist, preferably after 
an interdisciplinary discussion with a molecular genet
icist, neuroradiologist and/or neurologist. Unusual 
cases can be presented at an expert review session. 
Selected case reports demonstrating the importance of 
phenotypeguided interpretation of the test results are 
summarized in Supplementary Box 1.

Strategy if no diagnosis is reached
If no diagnosis has been reached after the general workflow 
has been applied, several strategies can be considered.

Clinical work-up
• Patient historyb

• Family historyc

• Physical examination should include 
OFC measurement, neurological 
examination, dysmorphology 
examination and skin inspection

Optional tests
• Ophthalmological examination
• Hearing evaluation

If phenotype is unexplained, consider the following:
• Clinical re-evaluation
• Expert imaging review
• Karyotype
• Homozygosity mapping on consanguineous pedigrees
• Targeted deep sequencing
• Molecular testing in alternative tissuef

• Metabolic testing
• Second MRI scan if first scan was performed at <2.5 years of age
• Creatine kinase, electromyography and/or muscle biopsy
• Enrol in research study
• Re-evaluation after 2 years

Consider the following:
• Segregation studies
• Functional validation
• Search for similar patients

Presentation suggestive 
of MCD (e.g. seizures, 
developmental delay)

MCD on imaginga/neuropathology, 
or microcephaly

Suspicion of single gene disorder
• Consider targeted testing

Microarray

No additional
genetic testinge

Phenotype
explained?

Phenotype
explained?

MCD gene panel (NGS)Open exome (trio)

No additional
genetic testinge

Normal

VOUS

Yes

Yes

No

Abnormal

No variant or variant in GOUS

No variants

Polymicrogyria or microcephaly, 
suspicion of congenital infectiond

• CMV testing
• Consider testing for Zika virus 

and/or TORCH syndrome

Fig. 2 | Diagnostic workflow for MCDs. This step-by-step diagnostic approach was formulated by Neuro-MIG. 
The main diagnostic steps are in purple-lined boxes. aSeek expert review. bIncluding prenatal and perinatal history. cIncludes 
construction of a pedigree and enquiry for consanguinity. dBased on additional features (for example, sick infant, abnormal 
liver function tests, retinal scarring or hearing loss), perinatal history (for example, maternal rash or fever) and/or imaging 
abnormalities (for example, calcifications, white matter injury or cysts). eOffer genetic counselling and segregation 
analysis to the patient and family members. fAffected brain tissue (if available), fibroblasts or saliva. CMV, cytomegalovirus; 
GOUS, gene of uncertain significance; MCD, malformation of cortical development; NGS, next-generation sequencing; 
OFC, occipitofrontal circumference, VOUS, variant of uncertain significance.
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Patients with an MCD pattern that is known to 
be highly specific for one or a few genes could bene
fit from visual inspection of NGS reads and/or alter
native targeted sequencing methods such as Sanger 
sequencing complemented by deletion/duplication 
testing of genes of interest84, as outlined in the section 
‘Phenotypespecific considerations’ below. Review of 
NGS data might reveal inadequate coverage of the genes 
of interest, or the filtering out of potentially relevant 
splice site or flanking intronic sequences.

If not performed previously, karyotype analysis 
should be considered in undiagnosed patients with 
MCDs (86% consensus from the NeuroMIG network). 
Balanced translocations and ring chromosome abnor
malities are a rare cause of MCDs but have occasionally 
been described35,85.

Patients from consanguineous pedigrees and fami
lies with multiple affected siblings might benefit from 
a single nucleotide polymorphism microarray analysis 
to identify regions of homozygosity. If a homozygous 
region contains a known MCDrelated gene that is com
patible with the phenotype, special attention must be 
given to the known deep intronic variants86–89 (listed in 
Supplementary Table 3).

Metabolic investigations should be considered in 
patients with microcephaly, polymicrogyria or COB, as 
a broad range of metabolic diseases, including peroxi
somal disorders, glutaric aciduria, fumarase deficiency 
and Dbifunctional protein deficiency, can manifest 
with cortical malformations resembling these MCD 
patterns1.

In patients with unexplained MCDs and muscle weak
ness and/or elevated creatine kinase, a muscle biopsy 
might be considered to allow specific analysis for dys
troglycanopathies and mitochondrial disorders. The 
results of muscle biopsy allied to characteristic brain 
imaging findings in the CNS may help to indicate the 
affected gene90.

Some patients might benefit from repeat brain 
imaging, especially if the first MRI scan was performed 
before completion of myelination (3 months to 2.5 years 
of age) or was of low quality (for example, low resolu
tion, or inadequate exploration of the brain according 
to the axial, coronal and sagittal plan and/or inadequate 
sequences). Occasionally, brain MRI scans of the par
ents can identify a previously unrecognized familial 
malformation syndrome41,91,92.

Autopsy represents an important final procedure in 
deceased patients with unexplained MCDs as it can pro
vide additional information that cannot be obtained dur
ing life93. Also, after brain surgery, DNA can be extracted 
from affected brain tissue to identify somatic patho
genic variants. Specific protocols are recommended for 
the evaluation of perinatal and postnatal brain tissue, 
including both frozen and fixed tissue samples from 
key brain regions (that is, regions that are vulnerable to 
epilepsyrelated damage) to identify specific structural 
abnormalities and rule out other pathologies94.

Finally, patients without a diagnosis should be con
sidered for triobased wholegenome sequencing and 
RNA sequencing, preferably within a large collabo
rative research network to allow rapid discovery of novel 

causative variants, noncoding variants in regulatory 
elements and epigenetic variations95–97.

Recurrence risk and genetic counselling
Only when the cause of the MCD is known can an accu
rate recurrence risk be provided to the patient and their 
family. When the cause is unknown, an attempt should 
be made to provide an empirical risk figure. This figure 
depends on the type of malformation, clinical presenta
tion and the causes that have been reliably excluded 
(TaBle 3). We should point out that empirical risk coun
selling requires very high confidence in correct MRI 
interpretation and recognition of the specific phenotype.

Phenotype-specific considerations
Microcephaly. The aetiology of microcephaly is hetero
geneous and includes both genetic and nongenetic 
factors. Nongenetic causes, including intrauterine tera
togen exposure (for example, alcohol or drugs), congen
ital infections and perinatal and postnatal brain injuries 
(placental insufficiency, birth complications, postnatal 
infarcts and concussions), account for almost 30% of 
microcephaly cases. Recognized genetic causes include 
chromosomal aneuploidies, CNVs, some of which 
are submicroscopic, and a rapidly growing number 
of single gene disorders (reviewed by Pirozzi et al.11). 
Accurate perinatal historytaking aids the identification 
of teratogen exposure and infections, although a negative 
history can never reliably rule out these causes. Brain 
scans should be scrutinized for signs of fetal injury, 
including gliosis, cysts and calcifications. Clinicians 
should be aware that cortical malformations, espe
cially polymicrogyria, can also be caused by fetal injury 
(see also below). Recurrence in the family, dysmorphic 
features and congenital abnormalities outside the CNS 
can be indicative of a genetic cause.

Ophthalmological abnormalities are found in up 
to 48% of patients with microcephaly98,99, including 
chorioretinal lacunae in Aicardi syndrome, chorio
retinopathy in KIF11related microcephaly, micro
phthalmia and cataract in Warburg Micro syndrome 
and cerebrooculofacioskeletal syndrome, chorioret
initis after in utero CMV or toxoplasmosis infection, 
and a wide spectrum of abnormalities of the macula, 
retina and optic nerve after in utero Zika virus infec
tion. Therefore, a detailed eye examination should be 
routinely performed in every individual with micro
cephaly so that appropriate support and diagnostics can 
be implemented.

Megalencephaly. Examination of an individual with 
megalencephaly should include an assessment of 
whether the malformation is confined to the brain 
or whether it is associated with a generalized or seg
mental overgrowth syndrome. Careful assessment of 
serial height, weight and OFC measurements is helpful, 
as is examining the body for any asymmetries and skin 
abnormalities. Overgrowth usually manifests within the 
first 2 years of life100. Currently, >20 generalized over
growth syndromes are known (reviewed elsewhere100,101). 
Distinctive facial features can also aid identification of 
the underlying syndrome.
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Generalized overgrowth syndromes are most often 
caused by germline gene mutations or CNVs, which 
can be identified with the standardized workflow. 
By contrast, segmental overgrowth syndromes and 
some isolated megalencephaly syndromes are caused 
by somatic mutations that might elude detection by 
standard workflows. To increase the chance of iden
tifying the diseasecausing variant, it might be neces
sary to sequence DNA derived from affected tissue (for 
example, skin or brain specimens) instead of blood. 
Further details of this approach are provided in the 
section ‘Detecting mosaic variants’ below. Several over
growth syndromes, as well as the PTEN hamartoma 
tumour syndrome, are associated with an increased risk 
of malignancies.

An increasing number of defects in genes involved 
in cell growth and proliferation pathways are being 
identified in megalencephaly. The affected pathways 
and molecules include the PI3K–AKT–mTOR and 
RAS–MAPK–ERK pathways, DNA methyltransferases, 
transcription initiation regulators and receptor tyrosine 
kinases11,102,103. In our experience, PI3K–AKT–mTOR 
pathwayassociated megalencephaly is often ≥3 s.d. above 
the mean. Mutations in this pathway can cause either 
isolated or syndromal megalencephaly, with other fea
tures including somatic (body) overgrowth and/or other 

MCDs, including polymicrogyria104,105. Given the high 
prevalence of mosaicism in these disorders, a tailored 
approach is recommended (see below).

Lissencephaly spectrum. The lissencephaly imaging 
classification was updated in 2017 and now includes 21 
patterns17. Lissencephaly is considered to be an exclu
sively genetic disorder40, with 28 genes currently known 
to be associated with this condition (Supplementary 
Table 3). Four lissencephaly patterns are highly specific 
for pathogenic variants in one or two genes, with diag
nostic yields >90%40. The first pattern is diffuse agyria 
with cortical thickness >10 mm, which is caused by 
LIS1 and DCX variants. The main cause in this group is 
a microdeletion at chromosome 17p13.3, the LIS1 locus, 
which can cause isolated lissencephaly, or Miller–Dieker 
syndrome in the case of a larger deletion40. The second 
specific pattern is occipital agyria combined with frontal 
pachygyria, which is primarily associated with deletions 
and pathogenic variants in LIS1, but also in rare cases 
with TUBG1 variants and TUBA1A variants affecting 
codon Arg402. The third pattern is pachygyria with a 
cortical thickness of 5–10 mm, most prominent over 
the temporal lobes, combined with complete agenesis 
of the corpus callosum and severe hypomyelination. 
This pattern is caused by ARX pathogenic variants. 

Table 3 | MCD empirical recurrence risk

MCD entity Known inheritance patternsa general empirical recurrence risk

Microcephaly AD, AR, XL, non-Mendelian 
(imprinting, mitochondrial), 
non-genetic

No reliable estimate available; all inheritance patterns should be discussed

Megalencephaly AD, AR, XL, non-Mendelian 
(imprinting, mitochondrial, 
postzygotic mosaic)

No reliable estimate available; all inheritance patterns should be discussed

Low for siblings if clinical presentation in proband is highly suggestive of a 
mosaic disorder

Lissencephaly: cortex >10 mm AD, rarely XL or AR Probably low for siblings

Caution especially in families with consanguinity; recessive inheritance has 
been reported175,176

Lissencephaly: cortex 5–10 mm AR, AD (tubulinopathy) Risk for siblings 25% unless phenotype is classified as tubulinopathy (AD)

Risk for offspring depends on the carrier status and/or degree of family 
relationship with the partner (up to 50% if partner is a carrier)

Lissencephaly: subcortical band 
heterotopia (SBH)

XL (diffuse SBH) or mosaic XL risk for siblings — discuss up to 50% as mother can be an asymptomatic carrier

Risk for offspring 50% (≤50% if postzygotic mosaic is suspected); males are not 
known to reproduce

Cobblestone malformation (COB) AR Risk for siblings 25%

Periventricular nodular 
heterotopia (PVNH)

XLD, AD, AR, non-genetic No reliable estimate available; all inheritance patterns should be discussed; 
probably low risk for single nodules

Subcortical heterotopia (SUBH) Minority AR, most unknown, 
possible non-genetic or 
postzygotic mosaic

Risk for siblings probably low unless AR disorder is clinically recognized (25%)

Risks for offspring probably low (no vertical transmission documented to date)

Polymicrogyria AD, AR, XL, non-genetic No reliable estimate available; consider that polymicrogyria is easily confused 
with COB

Tubulinopathies AD If parents are unaffected, risk for siblings is low

Risk for offspring ≤50%

Focal cortical dysplasia (FCD) 
and hemimegalencephaly

Postzygotic mosaic, AD with or 
without reduced penetrance

Probably low for single isolated cases or if no germline variants in TSC1, TSC2, 
DEPDC5, NPRL2 or NPRL2 have been identified; otherwise up to 50%

AD autosomal dominant; AR autosomal recessive; MCD, malformations of cortical development; XL, X-linked; XLD, X-linked dominant. aAdditional inheritance 
patterns might be discovered in the future.
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Note that pathogenic variants in DYNC1H1 have been 
linked to a similar lissencephaly pattern but without 
hypomyelination. The fourth pattern, diffuse SBH with 
a band thickness >5 mm, is a pathognomonic pattern 
strongly associated with pathogenic variants in DCX in 
both women and men40. Posteriorpredominant SBH is 
associated with mild or mosaic LIS1 mutations40.

No other genes have been associated with these pat
terns. Therefore, a negative test result for those genes in a 
patient with a specific phenotype should prompt an offer 
to the family to participate in a research project focusing 
on gene discovery.

Periventricular nodular heterotopia. PVNH is associ
ated with numerous CNVs and single gene mutations 
and can be part of a complex syndromic disorder, such 
as van Maldergem syndrome, Donnai–Barrow syn
drome, Au–Kline syndrome or Noonanlike syndrome 
with loose anagen hair37. Proteins encoded by the genes 
associated with PVNH are involved in several cellular 
and molecular mechanisms, including the formation of 
the radial glial scaffold, cell–cell adhesion and vesicle 
trafficking. In addition, dysregulation of PI3K–AKT–
mTOR or SMAD2/3 signalling pathways, RNA process
ing or transcriptional regulation has been reported in 
people with PVNH106–108. At least 20 genes have been 
associated with this condition (Supplementary Table 2).

FLNA mutations are an important monogenic 
cause of PVNH and, owing to a substantial risk of car
diovascular and other organ complications, identifi
cation of FLNArelated disorders is of great clinical 
importance77,109. Although no single feature is pathog
nomonic, several features should raise suspicion of an 
FLNA mutation, including female sex, with or without 
a positive family history that follows an Xlinked dom
inant pattern; absence of overt intellectual disability, 
although learning difficulties, dyslexia and/or psychi
atric problems can be present110,111; bilateral clusters 
of confluent nodules extending along the walls of the 
frontocentral lateral ventricles (classic PVNH)44; and 
the presence of a retrocerebellar cyst or mega cisterna 
magna44,110. Less frequently, corpus callosum hypo
plasia, inward rotated anterior ventricular horns, white 
matter abnormalities and/or focal cortical abnormali
ties can be observed77,110. Systemic involvement is not 
an obligatory feature but can be present, leading to 
cardiovascular abnormalities such as patent ductus 
arteriosus, aortic aneurysm and cardiac valvular dystro
phy; obstructive lung disease; constipation; coagulop
athy; joint hypermobility; and other connective tissue 
abnormalities77,109,110.

In individuals with one or two single nodules, normal 
cognitive functioning and no other congenital abnor
malities, the yield of genetic testing is low. However, 
these individuals can harbour mosaic FLNA mutations 
that might be passed on through the germline to their 
offspring44.

Posteriorpredominant PVNH is a common pat
tern that is often associated with overlying poly
microgyria and/or subcortical heterotopia, as well as 
abnormalities of the fossa posterior, corpus callosum 
and/or hippocampus112. This pattern can be caused by 

a microdeletion of chromosome 6q27, but has also been 
associated with fetal brain injury36,113.

Subcortical heterotopia. Several rare, mostly symmetri
cal bilateral forms of SUBH have a genetic origin, usu
ally with an autosomal recessive mode of inheritance. 
Extensive brain involvement is seen in the mesial paras
agittal form associated with Chudley–McCullough 
syndrome, which results from biallelic variants in 
GPSM2, and ribbonlike heterotopia, in combination 
with agenesis of the corpus callosum and megalen
cephaly, is observed in individuals with biallelic EML1 
variants114,115. Another rare subtype affecting the peri
trigonal regions has been observed in patients with 
variants in genes encoding a microtubule component 
(TUBB), a microtubulesevering protein that localizes to 
the centrosome and mitotic spindle during cell division 
(KATNB1), or a centrosomal protein with tubulindimer 
binding activity (CENPJ)21.

In parallel with the diverse morphology of SUBH, 
the aetiology of this condition is also very heterogene
ous, and for certain subtypes is largely unknown. For 
example, no genetic cause has been identified for cur
vilinear heterotopia, which is often asymmetric and can 
extend from the cortex to the ependyma21,116. However, 
a vascular disruptive cause has been suggested in several 
patients on the basis of a prenatal history of twinning, 
near miscarriage or trauma117–120, and some cases are 
hypothesized to result from postzygotic mutations21.

Polymicrogyria. The aetiology of polymicrogyria can 
be either genetic or disruptive27, and our new clinical 
workflow has been designed to make the physician 
aware of potential pitfalls. Despite extensive workup, 
including genomic testing, the underlying aetiology of 
polymicrogyria often remains unknown.

In a substantial proportion of patients, polymicro
gyria has a genetic aetiology. Various CNVs, in par
ticular, 22q11.2 and 1p36 deletions, have been linked to 
this condition, along with a rapidly growing number of 
monogenic causes, including several metabolic disorders 
(Supplementary Table 2). Dozens of genes implicated in 
different pathways or groups of related disorders, includ
ing the mTORopathies (affecting the PI3K–AKT–mTOR 
pathway), the tubulinopathies and the RABopathies, 
have been associated with polymicrogyria121.

A common cause of polymicrogyria is a congenital 
CMV infection, which is thought to account for 12–30% 
of cases, or even more among patients with specific 
white matter changes62,64. Congenital CMV infection 
should be suspected if polymicrogyria is observed in the 
presence of clinical features such as microcephaly and 
congenital sensorineural hearing loss. Imaging features 
suggestive of congenital CMV, besides polymicrogyria, 
include white matter hyperintensities and intracranial 
calcifications62,64,122. Toxoplasmosis, syphilis, varicella 
zoster virus and Zika virus have also been associated 
with polymicrogyria27,60. Additional nongenetic causes 
include vascular disruptive events during pregnancy and, 
according to a few reports, maternal ergotamine use123. 
Twinning is also a risk factor for polymicrogyria, par
ticularly in the case of death of a monozygotic cotwin, 
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and in some cases of twintotwin transfusion syndrome, 
in which the donor twin is most commonly affected124. 
The association with twinning is proposed to be related 
to vascular disturbance and/or hypoperfusion125.

Dysmorphic features, multiple congenital abnormali
ties, megalencephaly and microcephaly are all indicative 
of a genetic cause, although the latter condition can also 
be associated with congenital infection. Evaluation of 
head circumference is an essential part of the clinical 
workup and could assist with variant interpretation, as 
several genes are specifically associated with microceph
aly or megalencephaly121. The bestknown gene associ
ated with polymicrogyria and microcephaly is WDR62, 
and germline or somatic variants in genes encoding 
components of the mTOR pathway, such as PIK3CA 
and PIK3R2, are usually associated with megalenceph
aly, often with other abnormalities such as vascular skin 
lesions and digital anomalies121. Calcifications on brain 
imaging are indicative of fetal brain injury (dystrophic 
calcification). However, COL4A1 and COL4A2 patho
genic variants can genetically predispose to fetal vascu
lar injuries, and the pseudoTORCH syndrome mimics 
congenital infection126,127.

Polymicrogyria can be associated with peroxisomal 
disorders such as Zellweger syndrome or Dbifunctional 
protein deficiency, and is reported in up to 65% of 
patients with the latter condition128. A peroxisomal dis
order should be suspected if a child with polymicrogy
ria is unusually sick for an individual with a static brain 
malformation, particularly in the neonatal period or 
early infancy. Additional abnormalities might be found, 
including dysmorphic features, hepatomegaly and pro
found hypotonia. In addition to polymicrogyria, brain 
MRI will usually show severe leukoencephalopathy129. If a 
peroxisomal disorder is suspected, plasma levels of very 
long chain fatty acids (VLCFAs) should be checked, and 
further investigations such as skin fibroblast enzymatic 
analysis or genomic testing should be initiated.

The workup of a patient with polymicrogyria first 
requires astute clinical assessment and review of the 
brain MRI scan. If CMV is suspected, attempts should 
be made to retrieve the Guthrie neonatal blood spot for 
CMV PCR. VLCFA analysis should be requested if a 
peroxisomal disorder is suspected. CMA remains the 
first tier of genomic analysis. Although many genes have 
been associated with polymicrogyria, the yield of stand
ard genomic testing is generally ~20% (unpublished 
work from NeuroMIG laboratories). Deep sequencing 
might be required to identify mosaic variants, especially 
in patients with megalencephaly. However, patients 
with mosaic PIK3R2 mutations and normal OFC have 
been reported.

Cobblestone malformation. All currently known COB 
syndromes are genetic and inherited in an autosomal 
recessive mode. A major group is the dystroglycan
opathies, which are linked to various genes required 
for Oglycosylation of αdystroglycan (Supplementary 
Table 1). Patients often have muscular dystrophy 
with markedly elevated serum creatine kinase levels. 
Moreover, eye involvement, such as severe myopia 
or structural malformations, is frequently observed. 

Recurrent biallelic microdeletions at the ISPD locus are 
the most common cause of dystroglycanopathies. Other 
COB syndromes include laminopathies, congenital dis
orders of glycosylation and basement membrane trans
migration disorders (reviewed by Dobyns et al.27). At the 
imaging level, COB can be difficult to distinguish from 
polymicrogyria27, but creatine kinase analysis and/or an 
ophthalmological examination can potentially guide the 
clinical diagnosis25.

Differentiation of COB syndromes from polymicro
gyria might be especially challenging on lowresolution 
images and at a young age when myelination is still 
ongoing (from 3 months to 2 years of age). Useful distin
guishing characteristics include the intracortical striations 
that appear at regular intervals vertical and perpendicular 
to the grey–white matter border in COB and that differ 
from the chaotic striations seen in polymicrogyria27. 
Other structural malformations that can cooccur with 
COB include hydrocephalus, brainstem hypoplasia and 
cerebellar cysts. The white matter might show an abnor
mal MRI signal and small cysts. However, what clearly 
appears as polymicrogyria on MRI can present as typical 
neuronal overmigration on microscopic examination, 
suggesting that COB and polymicrogyria have a common 
pathogenesis130.

Tubulinopathies. Tubulinopathy is caused by heterozy
gous missense variants in any one of six tubulinencoding 
genes, TUBA1A, TUBB2A, TUBB2B, TUBB3, TUBB and 
TUBG1. The variants probably exert dominantnegative 
effects on microtubule assembly and/or function. 
Although several pathogenic variants are recurrent, 
many patients harbour a unique variant, which can be 
difficult to confidently classify as pathogenic without 
functional studies131.

The tubulinopathies present with highly heterogene
ous yet very recognizable patterns of brain malforma
tions. The presence of a typical tubulinopathy pattern 
can be helpful in the interpretation of variants of uncer
tain significance (VOUS)131. Abnormalities of the cor
tex can be obvious or subtle, and the range encompasses 
microlissencephaly, pachygyria with a cortical thickness 
>10 mm, pachygyria with a 5–10 mm thick cortex (often 
more prominent in the perisylvian regions), polymicro
gyria, dysgyria and a simplified gyral pattern17,30,131,132. 
The basal ganglia are usually dysmorphic, including an 
enlarged caudate and absent or diminutive anterior limb 
of the internal capsule (dividing the caudate from the 
putamen), resulting in a fused striatum that in turn gives 
the frontal horns of the lateral ventricles a characteristic 
‘hooked’ appearance. Callosal abnormalities (partial or 
complete agenesis of the corpus callosum), ventricu
lomegaly, vermian dysplasia with ‘diagonal’ folia (folia 
crossing the midline at an oblique angle), cerebellar 
hypoplasia and asymmetric hypoplasia of the brainstem 
might also be seen30,31,131,133. TUBB3 pathogenic variants 
can cause an ocular motility disorder, known as congen
ital fibrosis of the extraocular muscles type 3, with or 
without MCD or axonal polyneuropathy132.

Pathogenic variants in DYNC1H1 and KIF2A, which 
encode microtubuleassociated motor proteins, also 
lead to a spectrum of MCDs, ranging from pachygyria 
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to dysgyria. Similar to the tubulinopathy spectrum, 
most individuals demonstrate a large caudate and ver
mian hypoplasia. DYNC1H1 variants can be associated 
with peripheral nerve disease ranging from fetal aki
nesia to spinal muscular atrophy with lower extremity 
predominance134.

FCD and hemimegalencephaly. Somatic and/or germline 
variants in numerous PI3K–AKT–mTOR pathway 
genes, including TSC2, TSC1, MTOR, PIK3CA, AKT3, 
RHEB, DEPDC5, NPRL3 and NPRL2, are known to 
be associated with malformations within the FCD– 
hemimegalencephaly spectrum55,135–139. TSC encompasses 
a wide spectrum of severity and clinical presentation, 
including FCD, and the diagnosis has consequences for 
surveillance and treatment79. In people who present with 
FCD, the skin and MRI should be checked for manifes
tations such as hypomelanotic macules, shagreen patch, 
additional FCD foci and subependymal nodules. If any 
of these features are present, a full diagnostic workup 
including TSC1/TSC2 testing is recommended140. 
Germline pathogenic variants in the GATOR1 complex 
genes DEPDC5, NPRL2 and NPRL3 are associated with 
focal onset seizures with or without FCD on imaging. 
In families with epilepsy in particular, these genes should 
be carefully checked for SNVs and CNVs that segre
gate in an autosomal dominant pattern with reduced 
penetrance141–143. Twohit models involving germline 
plus somatic variants in TSC2 and DEPDC5 have been 
proposed to explain the aetiology of TSCassociated 
FCD and isolated FCD type IIA141,142,144. In recent years, 
somatic mutations in SLC35A2, which encodes an 
enzyme involved in glycosylation, have been found in 
focal epilepsy specimens and seem to be specific to FCD 
type I137,145,146. Analysis of resected brain tissue using deep 
sequencing and singlecell techniques might be required 
for detection of somatic mutations.

Cerebrovascular disorders associated with MCDs. 
Prenatal and postnatal cerebrovascular events can lead to 
ischaemic and disruptive brain malformations, including 
schizencephaly, polymicrogyria, intracranial calcifica
tions, cysts and porencephaly. Disorders with a vascu
lar and/or inflammatory basis, such as familial stroke, 
pseudoTORCH syndrome, Aicardi–Goutières syn
drome, leukoencephalopathy with cortical cysts, and cer
ebral microangiopathy syndromes with calcifications and 
cysts, can cause damage to the developing brain. A case 
series of 119 individuals with intracranial calcifications 
revealed a specific diagnosis in 50% of the cases147. 
Of these, 33 had Aicardi–Goutières syndrome, 6 had 
OCLN-related pseudoTORCH syndrome and 3 had a 
COL4A1-related disease. Pathogenic variants in USP18 
have been associated with cerebral haemorrhage in utero, 
leading to polymicrogyria148. However, polymicrogyria is 
a rare feature in cerebrovascular disorders.

Several reports have shown porencephaly, schizen
cephaly, polymicrogyria and PVNH associated with 
COL4A1 pathogenic variants, which cause imbal
ance or structural distortion of the collagen IV triple 
helix126,149,150. Evidence for a link between COL4A2 and 
MCDs is weaker, although, considering the functional 

interactions between the two collagen IV proteins, 
COL4A1 and COL4A2 should be tested together149. 
Despite reports of EMX2 as a ‘schizencephaly gene’, evi
dence of a role for EMX2 mutations in schizencephaly 
is lacking151,152.

A list of genes that have been associated with 
earlyonset and often severe cerebrovascular phenotypes 
is provided in Supplementary Table 4.

Laboratory requirements
Chromosomal microarray analysis
A survey within the NeuroMIG network, which was 
conducted in preparation for this Consensus Statement, 
indicated that multiple different microarray platforms 
can be used, with no specific technology showing a clear 
advantage.

When choosing CMA platforms for MCD diagnos
tics, special attention should be paid to the exonlevel 
resolution of genes in which singleexon aberrations 
have been described (Supplementary Table 3). Single 
nucleotide polymorphism arrays have the advantage of 
detecting regions of homozygosity, thereby facilitating 
diagnostics in consanguineous families. Mosaic CNVs 
showing as little as 15–20% chromosomal mosaicism 
were successfully detected in patients with neurode
velopmental disorders153. We anticipate that CMA will 
become redundant in the future as NGS costs further 
decrease and algorithms for CNV analysis from NGS 
data become more robust.

High-throughput sequencing
As MCDs constitute a genetically heterogeneous group 
of disorders and the number of known diseaseassociated 
genes is rapidly increasing, we strongly recommend 
genomewide testing approaches combined with tar
geted evaluation of genes that are currently implicated 
in MCDs (the ‘slice approach’). If the results of these tests 
are negative, the strategy can be expanded to a full trio 
exome analysis after appropriate genetic counselling. 
NeuroMIG network laboratories are applying various 
exome enrichment strategies with comparable efficiency 
across the platforms and compliance with published 
NGS guidelines154,155. Most current exome sequencing 
enrichment kits provide sufficient coverage to offer 
an MCD panel as a type A or type B test154. The terms 
type A and type B refer to the definitions from the cur
rent guidelines for diagnostic NGS from the European 
Society of Human Genetics (ESHG), whereby the lab
oratory guarantees >99% reliable reference or variant 
calls of the target regions (type A) or describes exactly 
which regions are sequenced at >99% reliable reference 
or variant calls (type B)154.

Variant calling and prioritization
Our experience shows that an average per base cover
age of 100 reads with a minimum coverage of 30 reads 
is sufficient for reliable calls within coding and flank
ing intronic regions. NeuroMIG network members 
preferentially use a variant calling threshold of 20% 
of the nonreference (alternative) reads and variant 
calling is performed within exons and 10 bp of the 
flanking intronic sequence (80% consensus). However, 
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deep intronic variants affecting splicing have already 
been described in several MCDassociated genes 
(Supplementary Table 5). Such variants need to be con
sidered in patients with highly suggestive phenotypes, 
but might require genome or targeted sequencing.

The described approach is applicable for the iden
tification of constitutional (germline) and highgrade 
mosaic variants (>30% of cells). Special considerations 
regarding detection and validation of lowgrade mosaic 
variants are summarized in the section ‘Detecting 
mosaic variants’ below.

Supplementary Table 2 provides a curated list of the 
core MCDassociated genes, including information 
on the observed mutational spectrum and associated 
phenotypes. Supplementary Table 3 summarizes selected 
genes associated with syndromic, often postnatal micro
cephaly. Microcephaly is a frequent accompanying fea
ture of these conditions but is not a key manifestation. 
Genes associated with disorders that always present with 
microcephaly are listed in Supplementary Table 2. Taking 
into account the number of novel diseaseassociated 
genes that are emerging, we strongly suggest updating 
the gene lists according to the current literature every 
6 months.

Variant interpretation follows the general rec
ommendations of EuroGentest, the ESHG and the 
American College of Medical Genetics and Genomics 
(ACMG)154,156.

As all MCD entities are rare disorders, we recommend 
classifying a variant as benign if the allele frequency is 
>1% in the Genome Aggregation Database (gnomAD), 
which differs from the ACMG standalone evidence 
of benign impact with an allele frequency of >5%157. 
As the Neuro cohort of gnomAD includes individuals 
with neuropsychiatric disorders, which represent a rare 
manifestation of MCDs, one should consider excluding 
variants from this cohort when estimating gnomAD 
allele frequency, as pathogenic MCDassociated var
iants might be present. The presence of a variant as a 
homozygous allele in multiple (at least five) individu
als in gnomAD strongly suggests its benign impact and 
irrelevance for the phenotype. However, one should be 
careful to check that the variant is truly homozygous and 
not hemizygous, combined with a deletion of the second 
allele. The impact of a homozygous SNV might differ 
substantially from the impact of deletion of one allele 
and the same SNV on the remaining allele158.

Pitfalls in variant prioritization. Inhouse variant data
bases, which contain data from a single institution, 
are another important source to distinguish benign 
from potentially causative variants. However, some 
MCDrelevant genes, especially those encoding tubulin, 
which are prone to readalignment errors, might have 
high falsepositive inhouse frequencies. One TUBB2B 
pathogenic variant, Ala248Val159, was listed in gnomAD 
with an allele frequency of 3% but is currently flagged as 
failed — that is, probably an artefact — by random forest 
filters. However, when inhouse data are analysed, this 
variant might erroneously show up in control samples 
in up to 30% of the reads (K.S., unpublished work) and 
might, therefore, be filtered out as a ‘frequent’ inhouse 

variant, despite being pathogenic. On the basis of this 
example, we suggest that manual curation of inhouse 
variants in the tubulinencoding genes should include 
consideration of mapping quality and comparison of 
inhouse frequencies with the curated gnomAD data
set. Sanger sequencing of TUBB2B could be consid
ered in undiagnosed patients with an MCD pattern 
highly suggestive of a tubulinopathy. In the near future, 
such misalignment errors should be solved through 
highresolution mapping and application of longread 
DNA sequencing platforms160.

The presence of highly homologous pseudogenes 
also complicates accurate variant calling for a number of 
MCDrelevant target genes161 (Supplementary Table 2).

Penetrance of MCD-associated variants. With the 
exception of Xchromosomal genes such as ARX and 
DCX, and gene encoding components of the GATOR1 
complex, variants in other MCDassociated genes seem 
to be fully penetrant, as carrier probands always show 
characteristic structural changes in the brain. However, 
individuals with these variants might be clinically 
asymptomatic and therefore never undergo brain MRI. 
In the case of inheritance of likely pathogenic variants 
from apparently unaffected parents, parental brain imag
ing is essential for accurate variant interpretation91,110. 
Female carriers of the Xchromosomal variants might 
be clinically unaffected and have normal brain scans43,162. 
Incomplete and/or agerelated penetrance were reported 
for variants mainly associated with a seizure phenotype 
(for example, GATOR1 complex genes163); therefore, 
variants inherited from unaffected parents might be 
considered causative.

Clinical laboratory report
The final laboratory report, including reporting of 
incidental findings, should follow the general require
ments published by EuroGentest, the ESHG and the 
ACMG, as well as countryspecific guidelines for genetic 
laboratory reports.

If the review board includes a medical professional 
with sufficient expertise in MRI interpretation, we rec
ommend that MRI scans should be presented together 
with the clinical information and relevant variants. 
Relevant clinical information and brain imaging are 
important for accurate interpretation of the variants and 
should be actively requested.

If parents and similarly affected siblings (if applica
ble) were not analysed together with the index patient, 
segregation analysis must be strongly recommended in 
the final report.

All pathogenic and likely pathogenic variants (class 
5 and class 4 variants, respectively) must be included in 
the final report. The final report should also contain all 
VOUS (class 3 variants) in MCDassociated genes. The 
laboratory should consider including proteinaltering 
de novo, homozygous or compound heterozygous rare 
variants in potentially relevant genes of uncertain sig
nificance in the final report. The relevance for the MCD 
phenotype might be determined on the basis of the 
expression pattern of the gene or its potential importance 
for human brain evolution (humanspecific genes or 
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transcripts). Despite the fact that most MCDassociated 
genes are evolutionarily conserved, primatespecific 
genes and isoforms should not be ignored as they can 
be linked to neurodevelopmental disorders164. The rele
vance of such variants must be continually reevaluated 
over time.

Highresolution, singleexonlevel CNV analy
sis is essential to complement the sequencing report. 
CNV analysis can be provided with different meth
ods including CNV calling from NGS data if robustly 
established and validated, multiplex ligationdependent 
probe amplification, quantitative PCR or customized 
highresolution microarrays.

The final report must specify whether CNV analysis 
has been performed, including information about the 
genes analysed and methods used for the analysis. If no 
copy number analysis has been carried out, the report 
must contain information about the genes that require 
copy number tests.

If (likely) pathogenic variants or VOUS have been 
identified, patients and/or their families should be 
referred to a clinical geneticist for return of results and 
counselling on their clinical and prognostic implications.

We recommend sharing VOUS in the available data
bases, such as ClinVar and the Leiden Open Variation 
Database. Depending on the local ethical and legal regu
lations, some laboratories might choose to use different 
countryspecific databases.

Additional considerations
Detecting mosaic variants
Mosaic (postzygotic somatic) mutations, including 
mutations in PI3K–AKT–mTOR pathway genes, as 
well as in DCX, LIS1, FLNA and TUBB2B, have been 
described in a wide range of MCDs54. Mosaic mutation 
variant detection requires dedicated deep sequencing 
and bioinformatics tools, as these variants are likely 
to be missed by standardcoverage exon sequencing, 
especially in bloodderived DNA58. When available, 
affected brain tissue is the recommended tissue for 
genetic testing. If this tissue is not available, the use 
of ‘proxies’ such as saliva or skinderived fibroblasts is  
recommended over lymphocytes when a mosaic dis
order is suspected58,165. Ideally, multiple tissues from the 
same individual should be examined.

Reliable testing requires a targeted approach to spe
cific loci, using a customized gene panel with ultradeep 
sequencing (for example, >1,000times coverage). 
A gene panel for PI3K–AKT–mTORrelated syndromes 
is provided in Supplementary Table 6. As a general rule, 
hybridizationbased assays offer superior performance 
over amplicon assays166. However, amplicon protocols 
with unique molecular identifiers during library prepa
ration have also proved effective for detecting somatic 
mutations167. The variantcalling algorithm (percent
age of nonreference allele reads) must be adapted for 
detecting lowgrade mosaic SNVs.

As falsepositive mosaic mutation calls can arise from 
many different sources, we strongly suggest confirma
tion of every lowgrade mosaic variant using an orthog
onal technology such as droplet digital PCR or a second 
independent round of ultradeep sequencing168–170.

Neuropathological work-up
Detailed neuropathological examination, biobanking 
and genetic testing are required after epilepsy surgery 
or autopsy in patients with MCDs, and also after sudden 
unexpected death in epilepsy, as individuals who die as 
a result of sudden unexpected death in epilepsy might 
have a previously undiagnosed MCD.

In 2016, the task force of neuropathology from 
the International League Against Epilepsy (ILAE) 
Commission on Diagnostic Methods published a con
sensus standard operational procedure for collection 
and processing of cortical samples from patients with 
MCDs such as FCDs94. Whenever feasible, anatomically 
intact surgical neocortical samples should be obtained 
to allow systematic analysis to identify the affected area. 
Correct orientation of the cortical sample and determi
nation of its relationship to neurophysiologically aber
rant sites and MRI findings requires an interdisciplinary 
diagnostic approach with good communication between 
pathology, neurology, radiology and neurosurgical teams. 
Representative tissue should be apportioned for histol
ogy and biobanking. Brain tissuederived DNA is often 
required for genetic diagnosis in FCD and hemimegal
encephaly; thus, highly standardized tissue processing is 
recommended. A neuropathologist should be involved in 
the interpretation of the brain pathology, and molecular 
biologists (or pathologists) and geneticists should partici
pate in the setup and analysis of the sequencing results171. 
A consensus protocol with details of how to best process 
resected brain specimens for somatic mutational analysis 
to detect mosaic variants for hemimegalencephaly, FCD 
types I and II, and other MCDs is under development by 
a task force of the ILAE (E.A., unpublished work).

Analysis of lowlevel mosaic mutations, such as those 
reported in FCDs57,136,142,172, requires careful selection of 
brain regions and cells to ensure enrichment of the mutated 
cells, followed by deep sequencing136,138. A study published 
in 2019 used resected brain tissue from a large cohort of 
patients after epilepsy surgery to explore the possibility 
of detecting lowlevel somatic mutations in unmatched 
formalinfixed paraffinembedded (FFPE) brain tissue 
samples (that is, brain samples without a blood sample 
from the same patient). FFPE samples often represent 
the most relevant samples in the standard neuropatho
logical diagnostic approach to MCDs146,173. The research
ers showed that deep sequencing, even when applied to 
unmatched FFPE brain tissues, can be used to accurately 
and efficiently detect lowlevel somatic mutations.

Conclusions
In this Consensus Statement, we present a diagnostic 
workup for individuals affected by brain malformations 
within the MCD spectrum, encompassing current best 
practices and recommendations based on the consen
sus of a multidisciplinary group of international experts 
within the NeuroMIG network. With this approach, 
we aim to increase diagnostic yield, thereby improving 
patient care and management worldwide and facilitat
ing the development of targeted therapeutic approaches 
in the long term.
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