23 research outputs found

    Anatomical Features Of The Urethra And Urinary Bladder Catheterization In Female Mice And Rats. An Essential Translational Tool [caracterĂ­sticas AnatĂŽmicas Da Cateterização Da Uretra E Bexiga De Camundongos E Ratos FĂȘmeas. Instrumento Essencial Na Pesquisa PrĂ© ClĂ­nica]

    Get PDF
    PURPOSE: To present fundamental anatomical aspects and technical skills necessary to urethra and urinary bladder catheterization in female mice and rats. METHODS: Urethral and bladder catheterization has been widely utilized for carcinogenesis and cancer research and still remains very useful in several applications: from toxicological purposes as well as inflammatory and infectious conditions to functional aspects as bladder dynamics and vesicoureteral reflux, among many others. RESULTS: Animal models are in the center of translational research and those involving rodents are the most important nowadays due to several advantages including human reproducibility, easy handling and low cost. CONCLUSIONS: Although technical and anatomical pearls for rodent urethral and bladder access are presented as tackles to the advancement of lower urinary tract preclinical investigation in a broaden sight, restriction to female animals hampers the male microenvironment, demanding future advances.26SUPPL. 2106110Reis, L.O., FĂĄvaro, W.J., Ferreira, U., Billis, A., Fazuoli, M.G., Cagnon, V.H., Evolution on experimental animal model for upper urothelium carcinogenesis (2010) World J Urol, 28, pp. 499-505Mulder, G.J., Scholtens, E., Meijer, D.K., Collection of metabolites in bile and urine from the rat (1981) Methods Enzymol, 77, pp. 21-30Krinke, G.J., (2000) The Laboratory Rat, , San Diego, CA: Academic PressPhillips, J.I., Davies, I., The comparative morphology of the bladder and urethra in young and old female C57BL/Icrfat mice (1980) Exp Geront, 15, pp. 551-562Andersson, K.E., Arner, A., Urinary bladder contraction and relaxation: Physiology and pathophysiology (2004) Physiol Rev, 84, pp. 935-986Reis, L.O., Pereira, T.C., Favaro, W.J., Cagnon, V.H., Lopes-Cendes, I., Ferreira, U., Experimental animal model and RNA interference: A promising association for bladder cancer research (2009) World J Urol, 27, pp. 353-361Marini, R.P., Esteves, M.I., Fox, J.G., A technique for catheterization of the urinary bladder in the ferret (1994) Lab Anim, 28, pp. 155-15

    A first estimate of triply heavy baryon masses from the pNRQCD perturbative static potential

    Get PDF
    Within pNRQCD we compute the masses of spin-averaged triply heavy baryons using the now-available NNLO pNRQCD potentials and three-body variational approach. We focus in particular on the role of the purely three-body interaction in perturbation theory. This we find to be reasonably small and of the order 25 MeV Our prediction for the Omega_ccc baryon mass is 4900(250) in keeping with other approaches. We propose to search for this hitherto unobserved state at B factories by examining the end point of the recoil spectrum against triple charm.Comment: 18 figures, 21 page

    All silicon waveguide spherical microcavity coupler device

    Full text link
    [EN] This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/ 10.1364/OE.19.003185. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawA coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations. © 2011 Optical Society of America.The authors wish to acknowledge financial support from projects FIS2009-07812; Consolider Nanolight.es 2007/0046 and NÂș 1841; the Spanish Education and Science Ministry, TEC2008- 06145; the Generalitat Valenciana, project PROMETEO/2008/092 and PROMETEO/2010/043; and project Apoyo a la investigaciĂłn 2009 from Universidad Politecnica de Valencia, nÂș reg. 4325. E. XifrĂ©-PĂ©rez acknowledges the financial support from the program Juan de la Cierva (Spanish Ministerio de EducaciĂłn y Ciencia). J. D. DomĂ©nech acknowledges the FPI research grant BES-2009-018381. Finally we thank Prof. J. Garcia de Abajo for providing us with the MESME theoretical program we have used in the calculation of electric field intensity distribution of the Mie modes.Xifre Perez, E.; DomĂ©nech GĂłmez, JD.; Fenollosa Esteve, R.; Muñoz Muñoz, P.; Capmany Francoy, J.; Meseguer Rico, FJ. (2011). All silicon waveguide spherical microcavity coupler device. Optics Express. 19(4):3185-3192. https://doi.org/10.1364/OE.19.003185S31853192194Cai, M., Painter, O., Vahala, K. J., & Sercel, P. C. (2000). Fiber-coupled microsphere laser. Optics Letters, 25(19), 1430. doi:10.1364/ol.25.001430Knight, J. C., Dubreuil, N., Sandoghdar, V., Hare, J., LefĂšvre-Seguin, V., Raimond, J. M., & Haroche, S. (1995). Mapping whispering-gallery modes in microspheres with a near-field probe. Optics Letters, 20(14), 1515. doi:10.1364/ol.20.001515LefĂšvre-Seguin, V., & Haroche, S. (1997). Towards cavity-QED experiments with silica microspheres. Materials Science and Engineering: B, 48(1-2), 53-58. doi:10.1016/s0921-5107(97)00080-9Gorodetsky, M. L., Savchenkov, A. A., & Ilchenko, V. S. (1996). Ultimate Q of optical microsphere resonators. Optics Letters, 21(7), 453. doi:10.1364/ol.21.000453Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Streed, E. W., & Kimble, H. J. (1998). High-Q measurements of fused-silica microspheres in the near infrared. Optics Letters, 23(4), 247. doi:10.1364/ol.23.000247Vahala, K. J. (2003). Optical microcavities. Nature, 424(6950), 839-846. doi:10.1038/nature01939SerpengĂŒzel, A., & Demir, A. (2008). Silicon microspheres for near-IR communication applications. Semiconductor Science and Technology, 23(6), 064009. doi:10.1088/0268-1242/23/6/064009Broaddus, D. H., Foster, M. A., Agha, I. H., Robinson, J. T., Lipson, M., & Gaeta, A. L. (2009). Silicon-waveguide-coupled high-Q chalcogenide microspheres. Optics Express, 17(8), 5998. doi:10.1364/oe.17.005998Yilmaz, Y. O., Demir, A., Kurt, A., & Serpenguzel, A. (2005). Optical channel dropping with a silicon microsphere. IEEE Photonics Technology Letters, 17(8), 1662-1664. doi:10.1109/lpt.2005.850896Almeida, V. R., Barrios, C. A., Panepucci, R. R., & Lipson, M. (2004). All-optical control of light on a silicon chip. Nature, 431(7012), 1081-1084. doi:10.1038/nature02921Noda, S., Chutinan, A., & Imada, M. (2000). Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature, 407(6804), 608-610. doi:10.1038/35036532Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589XifrĂ©-PĂ©rez, E., GarcĂ­a de Abajo, F. J., Fenollosa, R., & Meseguer, F. (2009). Photonic Binding in Silicon-Colloid Microcavities. Physical Review Letters, 103(10). doi:10.1103/physrevlett.103.103902Conwell, P. R., Barber, P. W., & Rushforth, C. K. (1984). Resonant spectra of dielectric spheres. Journal of the Optical Society of America A, 1(1), 62. doi:10.1364/josaa.1.000062GarcĂ­a de Abajo, F. J. (1999). Multiple scattering of radiation in clusters of dielectrics. Physical Review B, 60(8), 6086-6102. doi:10.1103/physrevb.60.6086Laine, J.-P., Tapalian, C., Little, B., & Haus, H. (2001). Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler. Sensors and Actuators A: Physical, 93(1), 1-7. doi:10.1016/s0924-4247(01)00636-7Panitchob, Y., Murugan, G. S., Zervas, M. N., Horak, P., Berneschi, S., Pelli, S., 
 Wilkinson, J. S. (2008). Whispering gallery mode spectra of channel waveguide coupled Microspheres. Optics Express, 16(15), 11066. doi:10.1364/oe.16.011066Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., & Baets, R. (2006). Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics, 45(8A), 6071-6077. doi:10.1143/jjap.45.6071Mukaiyama, T., Takeda, K., Miyazaki, H., Jimba, Y., & Kuwata-Gonokami, M. (1999). Tight-Binding Photonic Molecule Modes of Resonant Bispheres. Physical Review Letters, 82(23), 4623-4626. doi:10.1103/physrevlett.82.4623Smith, D. D., Chang, H., & Fuller, K. A. (2003). Whispering-gallery mode splitting in coupled microresonators. Journal of the Optical Society of America B, 20(9), 1967. doi:10.1364/josab.20.00196

    Assessment of plasma chitotriosidase activity, CCL18/PARC concentration and NP-C suspicion index in the diagnosis of Niemann-Pick disease type C: A prospective observational study

    Get PDF
    Background: Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. The diagnosis of NP-C remains challenging due to the non-specific, heterogeneous nature of signs/symptoms. This study assessed the utility of plasma chitotriosidase (ChT) and Chemokine (C-C motif) ligand 18 (CCL18)/pulmonary and activation-regulated chemokine (PARC) in conjunction with the NP-C suspicion index (NP-C SI) for guiding confirmatory laboratory testing in patients with suspected NP-C. Methods: In a prospective observational cohort study, incorporating a retrospective determination of NP-C SI scores, two different diagnostic approaches were applied in two separate groups of unrelated patients from 51 Spanish medical centers (n = 118 in both groups). From Jan 2010 to Apr 2012 (Period 1), patients with =2 clinical signs/symptoms of NP-C were considered ''suspected NP-C'' cases, and NPC1/NPC2 sequencing, plasma chitotriosidase (ChT), CCL18/PARC and sphingomyelinase levels were assessed. Based on findings in Period 1, plasma ChT and CCL18/PARC, and NP-C SI prediction scores were determined in a second group of patients between May 2012 and Apr 2014 (Period 2), and NPC1 and NPC2 were sequenced only in those with elevated ChT and/or elevated CCL18/PARC and/or NP-C SI =70. Filipin staining and 7-ketocholesterol (7-KC) measurements were performed in all patients with NP-C gene mutations, where possible. Results: In total across Periods 1 and 2, 10/236 (4%) patients had a confirmed diagnosis o NP-C based on gene sequencing (5/118 4.2%] in each Period): all of these patients had two causal NPC1 mutations. Single mutant NPC1 alleles were detected in 8/236 (3%) patients, overall. Positive filipin staining results comprised three classical and five variant biochemical phenotypes. No NPC2 mutations were detected. All patients with NPC1 mutations had high ChT activity, high CCL18/PARC concentrations and/or NP-C SI scores =70. Plasma 7-KC was higher than control cut-off values in all patients with two NPC1 mutations, and in the majority of patients with single mutations. Family studies identified three further NP-C patients. Conclusion: This approach may be very useful for laboratories that do not have mass spectrometry facilities and therefore, they cannot use other NP-C biomarkers for diagnosis

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Increased biofilm formation by nontypeable Haemophilus influenzae isolates from patients with invasive disease or otitis media versus strains recovered from cases of respiratory infections

    Get PDF
    Contains fulltext : 138899.pdf (publisher's version ) (Open Access)Biofilm formation by nontypeable (NT) Haemophilus influenzae remains a controversial topic. Nevertheless, biofilm-like structures have been observed in the middle-ear mucosa of experimental chinchilla models of otitis media (OM). To date, there have been no studies of biofilm formation in large collections of clinical isolates. This study aimed to investigate the initial adhesion to a solid surface and biofilm formation by NT H. influenzae by comparing isolates from healthy carriers, those with noninvasive respiratory disease, and those with invasive respiratory disease. We used 352 isolates from patients with nonbacteremic community-acquired pneumonia (NB-CAP), chronic obstructive pulmonary disease (COPD), OM, and invasive disease and a group of healthy colonized children. We then determined the speed of initial adhesion to a solid surface by the BioFilm ring test and quantified biofilm formation by crystal violet staining. Isolates from different clinical sources displayed high levels of biofilm formation on a static solid support after growth for 24 h. We observed clear differences in initial attachment and biofilm formation depending on the pathology associated with NT H. influenzae isolation, with significantly increased biofilm formation for NT H. influenzae isolates collected from patients with invasive disease and OM compared with NT H. influenzae isolates from patients with NB-CAP or COPD and healthy colonized subjects. In all cases, biofilm structures were detached by proteinase K treatment, suggesting an important role for proteins in the initial adhesion and static biofilm formation measured by crystal violet staining
    corecore