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Increased Biofilm Formation by Nontypeable Haemophilus influenzae
Isolates from Patients with Invasive Disease or Otitis Media versus
Strains Recovered from Cases of Respiratory Infections
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Biofilm formation by nontypeable (NT) Haemophilus influenzae remains a controversial topic. Nevertheless, biofilm-like struc-
tures have been observed in the middle-ear mucosa of experimental chinchilla models of otitis media (OM). To date, there have
been no studies of biofilm formation in large collections of clinical isolates. This study aimed to investigate the initial adhesion
to a solid surface and biofilm formation by NT H. influenzae by comparing isolates from healthy carriers, those with noninva-
sive respiratory disease, and those with invasive respiratory disease. We used 352 isolates from patients with nonbacteremic
community-acquired pneumonia (NB-CAP), chronic obstructive pulmonary disease (COPD), OM, and invasive disease and a
group of healthy colonized children. We then determined the speed of initial adhesion to a solid surface by the BioFilm ring test
and quantified biofilm formation by crystal violet staining. Isolates from different clinical sources displayed high levels of bio-
film formation on a static solid support after growth for 24 h. We observed clear differences in initial attachment and biofilm
formation depending on the pathology associated with NT H. influenzae isolation, with significantly increased biofilm forma-
tion for NT H. influenzae isolates collected from patients with invasive disease and OM compared with NT H. influenzae isolates
from patients with NB-CAP or COPD and healthy colonized subjects. In all cases, biofilm structures were detached by proteinase
K treatment, suggesting an important role for proteins in the initial adhesion and static biofilm formation measured by crystal
violet staining.

Nontypeable (NT) Haemophilus influenzae is an opportunistic
pathogen which is highly adapted to colonize the human up-

per respiratory tract and which can subsequently progress to cause
mucosal infections in children and adults (1–3). This Gram-neg-
ative unencapsulated microorganism is responsible for causing
upper respiratory tract infections (otitis media, sinusitis, and con-
junctivitis), community-acquired pneumonia (CAP), and acute
exacerbations of lower respiratory tract infections in adults with
chronic obstructive pulmonary disease (COPD) or cystic fibrosis
(CF) and is increasingly present in invasive disease (1, 2, 4).

The pathogenesis of many human infections, including
chronic and recurrent respiratory infections, has been associated
with biofilm communities; these biofilms represent a protective
mechanism that enhances bacterial resistance to clearance (5–7).
This mechanism has been observed in CF-related pulmonary in-
fections, mainly involving Pseudomonas aeruginosa (8–10). How-
ever, recent data have also revealed the presence of NT H. influen-
zae in biofilm communities in the lower and upper airways, and
physical evidence has been shown in experimental models of otitis
media (OM) with the detection of biofilm-like structures in the
middle-ear mucosa of chinchillas (11, 12). Moreover, these bio-
films could be important in early lung injury and could facilitate
colonization and infection by P. aeruginosa (1, 7). Despite these
observations, biofilm formation by NT H. influenzae remains a
controversial topic, because NT H. influenzae lacks a specific poly-
saccharide associated with the extracellular matrix (13).

To date, biofilm formation by NT H. influenzae has been stud-
ied in only a limited number of strains, and a repertoire of genes

and bacterial surface structures have been implicated in biofilm
formation and maturation. These include type IV pili (PilA) over-
expression (14), the presence of fimbriae (13), quorum sensing
(15), the presence of outer membrane proteins (OMPs) P2 and P5
(16), and the presence of phosphorylcholine (PCho) and sialic
acid in the lipooligosaccharide (LOS) molecule (17, 18). Despite
the previously shown role of PCho in biofilm growth (19), a lon-
gitudinal study on NT H. influenzae isolates from patients with
chronic respiratory disease found no clear correlation between
biofilm growth and the presence of PCho in the LOS molecule
(20). We previously showed the absence of a clear correlation
between in vitro biofilm formation and the presence of PCho in
the LOS of NT H. influenzae using a collection of 111 clinical
isolates from different clinical sources (21). Despite the limitation
imposed by the number of isolates, our previous study suggested
that isolates from the middle ear fluid of children with OM formed
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denser biofilm structures than isolates from patients with either
COPD or nonbacteremic community-acquired pneumonia (NB-
CAP). Given that no association had previously been observed
between the sample source and biofilm formation for NT H. in-
fluenzae, our study suggested the need for further investigation.
Therefore, to provide a more comprehensive analysis of the dif-
ferences in biofilm formation among different clinical sources, we
significantly expanded our collection to 352 isolates and included
NT H. influenzae isolates obtained from patients with invasive
disease. This study assessed the initial bacterial adhesion to and
biofilm formation on a solid surface by these isolates.

MATERIALS AND METHODS
Bacterial strains and culture conditions. We analyzed 352 NT H. influ-
enzae strains from five different patient groups. These included the fol-
lowing: (i) 92 isolates from sputum samples from patients with NB-CAP;
(ii) 60 isolates from sputum samples from patients with COPD; (iii) 29
isolates from the middle ear fluid of children with OM; (iv) 54 isolates
from the blood, cerebrospinal fluid, and pleural fluid of patients with
invasive disease; and (v) 117 oropharyngeal isolates from healthy children
in day care centers.

Isolates from NB-CAP (22), COPD (23), and invasive disease were
obtained from the Hospital de Bellvitge, Barcelona, Spain. Informed con-
sent was not required, as this process formed part of the normal microbi-
ological routine; patient confidentiality was always protected.

OM isolates were obtained from the University Medical Center, St.
Radboud, Nijmegen, The Netherlands (24), and approved by the Com-
mittee on Research Involving Human Subjects of the Radboud University
Medical Centre, Nijmegen (CMO 2007/239, international trial registry
number NCT00847756).

Isolates from healthy children were obtained in a point prevalence
study conducted in day care centers and schools in Oviedo, Spain, and
approved by the Ethics Committee of the Hospital Universitario Central
in Asturias, Spain (25).

All NT H. influenzae isolates were identified according to standard
microbiological procedures (26). Additionally, all isolates were identified
by mass spectrometry (matrix-assisted laser desorption ionization
[MALDI] Biotyper, version 3.0; Bruker) according to the manufacturer’s
instructions and preserved in frozen stocks at �80°C. H. influenzae and
Haemophilus haemolyticus were differentiated by detection of the lgtC,
fucK, and iga genes, as previously described (22). Capsular serotype was
determined by PCR using primers and conditions previously described
(27); only nontypeable strains were considered for this study. Isolates
were cultivated on brain heart infusion (BHI; BD) supplemented with 10
�g/ml hemin (Sigma-Aldrich) and 10 �g/ml NAD (Merck) (sBHI).
Growth was performed at 37°C in a 5% CO2 atmosphere.

Molecular genotyping. Molecular typing was performed on bacterial
suspensions by pulsed-field gel electrophoresis (PFGE) as previously de-
scribed (22). Genomic DNA embedded in agarose plugs was digested with
SmaI, and the fragments were separated using a CHEF-DRIII apparatus
(Bio-Rad). The PFGE band patterns were analyzed using Fingerprinting II
software 3.0 (Bio-Rad). Similarity of PFGE banding patterns was esti-
mated with the Dice coefficient (1% optimization and tolerance), and
isolates that were �85% similar were considered genetically related.

Biofilm formation. The static biofilm formation assay was performed
on 96-well plates with crystal violet staining, as previously described (21).
Before staining, the optical density at 600 nm (OD600) was determined to
assess bacterial growth. We obtained biofilm values by calculating the
mean absorbance from at least three independent tests and comparing it
with the absorbance of negative controls (sBHI). Isolates were defrosted
and used without additional passages for each repetition. The cutoff for
biofilm formation was three times the value of the negative control. Strong
biofilm formation was defined as three times the value of this cutoff, and

any value between was considered indicative of moderate biofilm forma-
tion.

Bacterial adhesion assay. The speed of initial bacterial adhesion was
evaluated by the BioFilm ring test (Biofilm Control, St Beauzire, France).
Biofilm and adhesion assays were performed in parallel to reduce differ-
ences in strain behavior. The adhesion assay was performed on modified
96-well polystyrene plates obtained from Biofilm Control, as described by
Chavant et al. (28). Briefly, bacterial suspensions were mixed with mag-
netic beads, incubated for 2 or 4 h at 37°C, and placed on a magnetic block.
Free beads migrated to the center of the well and formed a spot, while bead
migration was blocked in the presence of adherent bacteria. We used the
BioFilm Control software to obtain the biofilm index (BFI); values of �7
corresponded to a total lack of bacterial adherence, while values of �5
were associated with different degrees of bacterial adherence.

Classification regarding adhesion and biofilm. The BioFilm ring test
method was used to determine the speed of initial bacterial adhesion to a
surface, independently of bacterial biofilm formation after 24 h growth.
This is because faster and slower adhesion could be associated with differ-
ent bacterial adhesion mechanisms. Regarding the association between
initial adhesion and biofilm formation, four groups can be identified and
defined as follows: B�Ad�, biofilm formation at 24 h with a fast initial
adhesion to the surface; B�Ad�, biofilm formation at 24 h with a slow
initial adhesion to the surface; B�Ad�, no biofilm formation at 24 h with
a fast initial adhesion to the surface; B�Ad�, No biofilm formation at 24 h
with a slow initial adhesion to the surface.

Biofilm detachment assays. Biofilms were developed in 96-well plates
for 24 h as described. Biofilms attached to the bottom of the plate were
washed with water and separately treated with 10 mM sodium metaperio-
date or with 100 �g/ml proteinase K, as previously described (29). After
treatment for 2 h at 37°C, biofilms were washed and then stained with
crystal violet. The detachment assay was performed on a selection of 150
strains (52% of the biofilm-forming isolates) distributed among clinical
sources and with different intensities of biofilm formation.

The effect of proteinase K on bacterial viability was assessed on five
randomly selected isolates. Bacterial cultures were treated with 100 �g/ml
proteinase K at 37°C for 2 h. After serial dilutions were performed, treated
and untreated cultures were plated to determine bacterial viability by
calculating the number of CFU/ml.

Statistical analysis. Statistical analysis were performed using the
GraphPad Prism 5 software. Differences were evaluated using the Fisher
exact test or the chi-squared test with Yates’ correction. A P value less than
0.05 was considered statistically significant. Means � standard errors of
the means of at least three independent replicates are depicted. One-way
analysis of variance with the Newman-Keuls multiple-comparison post
hoc test was used for statistical analysis.

RESULTS
Molecular typing associated with adhesion and biofilm forma-
tion. Molecular typing was performed on all the studied isolates,
and their clonal relationship was compared among the indepen-
dent clinical sources (Table 1). (i) Ninety-two NB-CAP isolates
from 92 adult patients were separated into 48 genotypes. (ii) Sixty
COPD isolates from 60 adult patients were separated into 57 ge-
notypes. (iii) One hundred seventeen carrier isolates from 117
children were separated into 85 genotypes. (iv) Twenty-nine OM
isolates from 29 children were separated into 27 genotypes. (v)
Fifty-four invasive isolates from 54 adult patients were separated
into 47 genotypes.

Genotypically identical isolates obtained from unrelated pa-
tients displayed phenotypic differences. Thus, the initial adhesion
to the surface and biofilm formation patterns were not always
maintained; in fact, only half of the genotypes from unrelated
patients had the same initial adhesion and biofilm formation pro-
files.

Biofilm Formation by NT H. influenzae
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Relationship between NT H. influenzae adhesion and bacte-
rial origin. The speed of initial adhesion to a solid surface was
determined by the BioFilm ring test after 2 and 4 h static growth at
37°C, where NT H. influenzae strains that adhere were defined by
a BFI less than 5 (Fig. 1), being inversely proportional to the num-
ber of bacteria adhered to the surface. The number of NT H. in-
fluenzae isolates that adhered after 2 h was low for all the bacterial
groups tested (range, 3% to 14%). Isolates collected from patients
with invasive disease and from pediatric patients with OM showed
a significantly higher adhesion than isolates from carriers and
those from patients with COPD and NB-CAP. OM isolates also
showed a significantly higher adhesion rate than isolates from in-
vasive disease (Fig. 1A). After 4 h growth, the percentage of adher-
ent NT H. influenzae isolates was variable among the groups of
isolates (NB-CAP, 35%; invasive disease, 52%; healthy carriers,
56%; COPD, 58%; OM, 83%). NB-CAP isolates showed signifi-
cantly less adhesion than those from patients with invasive disease,
COPD, and OM and from healthy children (Fig. 1B). In addition,
following the trend observed after 2 h growth, the OM isolates
showed a significantly higher adhesion than isolates from the
other sources (NB-CAP and COPD strains, invasive strains, and
isolates from healthy children).

Relationship between NT H. influenzae biofilm formation
and bacterial origin. Most NT H. influenzae isolates from the five
clinical sources showed a clear ability to form biofilms (i.e., the
OD570 was more than three times that of the negative control) on
a static solid support after 24 h growth (range, 67% to 100%);
however, the percentage of strongly biofilm-forming isolates (the
OD570 was more than three times the cutoff) was variable among

the groups (range, 18% to 63%). As in the case of initial adhesion,
differences in the intensity of the biofilm formed were observed
between the five isolate groups, with no significant differences in
the stationary-phase culture (Fig. 2A). Isolates collected from pa-
tients with invasive disease and OM formed denser biofilms, as
measured by crystal violet staining, while isolates from NB-CAP
patients exhibited a lower capacity for biofilm formation (Fig. 2B)
than all the other groups studied. Although the lower biofilm for-
mation observed for NB-CAP isolates was not statistically signif-
icant compared to that of isolates from COPD patients and
healthy carriers, the number of isolates that did not form biofilms
(i.e., that were biofilm negative [B�], defined as having an OD570

less than three times that of the negative control) was significantly
higher (Fig. 3). Conversely, isolates from patients with COPD and
from healthy children showed similar levels of biofilm formation.

Correlation between NT H. influenzae adhesion and biofilm
formation. The relationship between initial adhesion to a solid
surface and biofilm formation varied between isolates. Four inde-
pendent groups were identified based on the amount of biofilm
formed and the speed of the initial adhesion to the surface (Fig. 3):
B�Ad�, B�Ad�, B�Ad�, and B�Ad�.

Most OM isolates (�80%) showed a fast initial adhesion to the
surface, which translated into strong biofilm formation after 24 h
of growth, while invasive isolates presented a high level of biofilm
formation independently of the speed of the initial adhesion to the
surface (Fig. 3). NB-CAP isolates were mostly associated with slow
adhesion, although some (�40%) were able to form biofilms after
24 h of growth. Isolates from COPD patients and healthy carriers
had similar patterns of adhesion and biofilm formation. As shown

TABLE 1 Genotype distribution within the five groups of NT H. influenzae isolates considered in this study

Source of NT H.
influenzaea

No. of
isolates

No. of genotypes No. of clusters with:

Total Unique 2 isolates 3 isolates 4 isolates 5 isolates 6 isolates 7 isolates 8 isolates

NB-CAP 92 48 27 10 7 1 1 0 1 1
COPD 60 57 54 3 0 0 0 0 0 0
Carriers 117 85 67 13 1 1 1 2 0 0
OM 29 27 25 2 0 0 0 0 0 0
Invasive disease 54 47 40 7 0 0 0 0 0 0
a OM, otitis media; NB-CAP, nonbacteremic community-acquired pneumonia; COPD, chronic obstructive pulmonary disease.

FIG 1 Initial adhesion to a solid surface determined by the BioFilm ring test after 2 h (A) and 4 h (B) of static growth at 37°C. The biofilm formation index (BFI)
was adjusted by the test software and is inversely proportional to the number of adherent bacteria. Dotted lines represent the cutoff for adhesion (BFI � 5), with
values of �5 representing high levels of adhesion to the surface. Means � standard errors of the means for at least three independent replicates are presented.
One-way analysis of variance with the Newman-Keuls multiple-comparison post hoc test was used for statistical analysis (*, P � 0.05; **, P � 0.01; ***, P � 0.001).
Abbreviations: OM, otitis media; NB-CAP, nonbacteremic community-acquired pneumonia; COPD, chronic obstructive pulmonary disease.
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in Fig. 4, no significant relationship was observed between initial
adhesion and biofilm formation for individual NT H. influenzae
isolates in any of the five groups studied.

Biofilm detachment. To compare the nature of the biofilm
structures formed by the clinical isolates, a biofilm detachment
assay was performed on 150 strains from the five sources. We also
considered the four categories established (B�Ad�, B�Ad�,
B�Ad�, and B�Ad�) to determine differences in biofilm compo-
sition. The biofilm structures of all the studied isolates were sen-
sitive to proteinase K and were highly resistant to sodium meta-
periodate. These findings were independent of the amount of
biofilm formed, the speed of adhesion to the solid surface, and the
isolate origin, indicating that initial attachment and biofilm for-
mation depends on the presence of proteins but not on sugar
components in the extracellular matrix (Fig. 5). Proteinase K
treatment did not affect viability.

DISCUSSION

Biofilm formation in chronic and recurrent infections is a persis-
tence mechanism used by a wide range of microorganisms (10, 30,
31). Biofilm structures are common, both in nature and in clinical
settings, and protect bacteria from bactericidal agents, bacterio-
phages, or host clearance mechanisms (30).

Despite the controversy over the inability to identify a specific
polysaccharide link to the extracellular matrix, biofilm formation
by NT H. influenzae has been widely described (11–13, 32). Addi-
tionally, there is evidence that bacterial adhesion to human epi-
thelial cells in the respiratory epithelium leads to microcolony and
biofilm formation (2). For this reason, a comprehensive analysis
of the capacity of NT H. influenzae isolates from different clinical
sources to form biofilms will contribute further insights into their
involvement in bacterial infection.

Bacterial adhesion. Previous studies used crystal violet stain-
ing after 2 h growth to determine the initial adhesion to solid
surfaces (33, 34). This staining is an established method for quan-
tifying biofilm formation; however, in common with other ap-
proaches that involve washing the surface where bacteria adhere,
this is a controversial technique for assessing initial adherence (33,
35). In fact, initial adhesion is a reversible process based on phys-
icochemical interactions (36) and, for this reason, repeated
washes can remove bacteria from the surface (33, 35, 37). Conse-
quently, we used the BioFilm ring test, a system based on the
immobilization of beads by adherent sessile bacteria (28) which
allows quantification of initial attachment while avoiding the
washing steps. Furthermore, it has been shown to be suitable for
the study of adhesion with Campylobacter spp. (38).

To date, no studies have shown the initial surface adhesion of
NT H. influenzae. After 4 h growth, NT H. influenzae isolates from
OM patients presented higher adherence levels than the other iso-
lates, while NB-CAP isolates showed the lowest level of adhesion.
It has been stated that bacterial isolates from different niches can
exhibit differences in adhesion patterns (34, 39). However, why
NT H. influenzae OM isolates should adhere faster than the other
isolates remains unresolved.

Biofilm formation. A biofilm starts to develop after bacteria

FIG 2 Stationary-phase cultures and biofilm formation determined for 352 NT H. influenzae isolates from patients with NB-CAP, COPD, OM, and invasive
disease and from healthy carriers. (A) Stationary-phase cultures measured by optical density at 600 nm (OD600); (B) biofilm formation measured by crystal violet
light absorbance at 570 nm (OD570). Means � standard errors of the means of at least three independent replicates are presented. One-way analysis of variance
with the Newman-Keuls multiple-comparison post hoc test was used for statistical analysis (*, P � 0.05; **, P � 0.01; ***, P � 0.001). Abbreviations: OM, otitis
media; NB-CAP, nonbacteremic community-acquired pneumonia; COPD, chronic obstructive pulmonary disease. The dashed line shows the OD570 that is more
than three times that of the negative control; the dotted line shows the OD570 that is more than three times the biofilm breakpoint.

FIG 3 Distribution within the NT H. influenzae clinical sources of four inde-
pendent groups regarding the amount of biofilm formed and the speed of
initial adhesion to the surface. OM, otitis media; NB-CAP, nonbacteremic
community-acquired pneumonia; COPD, chronic obstructive pulmonary dis-
ease. B�Ad�, biofilm formation with a fast initial adhesion to the surface;
B�Ad�, biofilm formation with a slow initial adhesion to the surface; B�Ad�,
no biofilm formation after 24 h with a fast initial adhesion to the surface;
B�Ad�, no biofilm formation after 24 h with a slow initial adhesion to the
surface.

Biofilm Formation by NT H. influenzae
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have irreversibly attached to the surface (30, 36). After 24 h
growth, the biofilm was more resistant to washing, and crystal
violet staining was selected for quantification. Biofilm formation
was significantly stronger for isolates from OM and invasive dis-
ease, supporting our previous findings on the increased ability of
OM isolates to form biofilm (21). OM isolates were obtained from
The Netherlands, and therefore we cannot completely exclude the
possibility of differences due to geographic variation. However,
studying 15 COPD and 15 OM isolates, Murphy and Kirkham
found no relationship between biofilm formation and the clinical
source of the sample (5). Their findings might have been related to
the limited number of isolates included in the study.

Interestingly, invasive isolates displayed the highest level of
biofilm formation. Previous studies on Streptococcus pneumoniae
showed that biofilm-producing isolates had an enhanced ability to
attach to host cells and a reduced ability to cause invasive disease
(40). However, other authors have linked in vitro biofilm forma-
tion to spread through tissue barriers (41, 42) and the adhesion
mediated by PilA with meningococcal sepsis (43), and studies on
H. influenzae type b suggested that fimbrial structures contribute
to bacterial spread into the circulation and secondary infection
sites (42).

Biofilm detachment. Requirement of a sugar moiety or a pro-
tein-based interaction with the surface was determined by treat-
ment with sodium metaperiodate (which cleaves sugar compo-
nents) and proteinase K (for protein degradation) (29). Biofilm
formation by all tested NT H. influenzae isolates was sensitive to
proteinase K, suggesting that proteins play an important role in
adhesion and biofilm formation. Izano et al. demonstrated rapid
biofilm detachment in eight NT H. influenzae isolates after adding
proteinase K and suggested that adhesins existed within the bio-

film structure (44). Our study significantly expands this observa-
tion based on a large collection of NT H. influenzae isolates from
different sources. Conversely, treatment with metaperiodate did
not affect biofilm, adding to the controversy regarding the role of
polysaccharides in NT H. influenzae biofilms (32).

Correlation between adhesion and biofilm formation. Bacte-
rial isolates from different areas can exhibit differences in adhe-
sion to solid surfaces (34, 39). We showed that, although adhesion
is the first step in biofilm formation, there is no relationship be-
tween speed of initial adhesion and biofilm formation. However,
given that the adhesion process is due to physicochemical interac-
tions between cellular components and the solid surface (36, 45,
46), differences in the initial surface adhesion could reflect vari-
ability in adhesive proteins (since no role was found for extracel-
lular polysaccharide). Further experiments to determine the pro-
teins associated with each type of disease could bring further
insights into the mechanisms used to cause infection.

Correlation between adhesion/biofilm and clinical infection.
Acute infections are often caused by planktonic bacteria, while
biofilm-producing bacteria are mostly associated with chronic in-
fection and colonization (10, 30). Our results partially support
this notion, because NB-CAP isolates exhibited slower adhesion
and lower biofilm formation than isolates from either patients
with chronic infections (COPD and OM) or healthy children.
However, isolates from invasive disease showed the highest levels
of biofilm formation. A previous study showed that Acinetobacter
baumannii isolates from blood and from a single meningitis sam-
ple formed biofilm, while those isolated from respiratory tract
infections were mostly unable to form biofilm (47). This differ-
ence could result from the fact that invasive isolates must cross
tissue barriers before causing infection.

FIG 4 Correlation between initial adhesion to a solid surface by the BioFilm ring test after 4 h growth and levels of biofilm formation measured by crystal violet
light absorbance at 570 nm (OD570) in 352 NT H. influenzae isolates from different sources. (A) NB-CAP patients; (B) COPD patients; (C) healthy children; (D)
children with OM; (E) patients with invasive disease; (F) all groups combined. Abbreviations: OM, otitis media; NB-CAP, nonbacteremic community-acquired
pneumonia; COPD, chronic obstructive pulmonary disease.
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NT H. influenzae binds to a variety of receptors in the respira-
tory tract (16). The OMPs P2 and P5, lipoproteins such as OapA,
and proteinaceous adhesins have been attributed early roles in
colonization (13, 48). Colonization by H. influenzae can result in
epithelial damage and eventually reach the circulatory system
(49), a process that could depend on the proteins expressed. Pre-
vious studies have shown that OMPs are likely to be expressed
differently in colonizing bacteria than in invasive isolates (50).
Therefore, studies on adhesion to eukaryotic cell lines and the
identification of proteins involved in this adhesion would shed
light on the differences among groups observed in this study.

Molecular typing associated with adhesion and biofilm for-
mation. PFGE-based genotypically identical isolates from differ-
ent episodes in the same patient maintained the adherence behav-
ior and biofilm formation (data not shown), but this was not the
case for the genotypically identical isolates from unrelated pa-
tients whose samples were used in this study. Thus, closely related
isolates from different individuals may undergo modifications in
the environment or within the host that can alter their ability to
adhere and form biofilms. Host-pathogen interactions, including
pathology, antimicrobial therapy, and inflammatory responses of
different degrees, could be responsible for the variability in adhe-
sion patterns. Bakker et al. suggested that isolates from different
sources exhibit modifications in their adhesion patterns, not only
because of the environment but because bacterial outer compo-
nents have adapted through selective pressure over time (39). We
acknowledge the limitation imposed by PFGE-based genotyping
on bacteria obtained from single colonies and cannot exclude an
association between the observed phenotypic differences and
nonsynonymous polymorphisms in closely related isolates.

In conclusion, our results suggest differences in biofilm forma-
tion depending on the type of disease caused by NT H. influenzae.
Specifically, there was a clear increase in biofilm-forming ability
among isolates from OM and invasive disease. We also found that
biofilm stability was dependent on protein interaction; this may
represent a novel therapeutic target for disrupting established bio-
films in vivo.
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