5 research outputs found

    Electronic cigarettes: A position statement from the Thoracic Society of Australia and New Zealand*

    Get PDF
    The TSANZ develops position statements where insufficient data exist to write formal clinical guidelines. In 2018, the TSANZ addressed the question of potential benefits and health impacts of electronic cigarettes (EC). The working party included groups focused on health impacts, smoking cessation, youth issues and priority populations. The 2018 report on the Public Health Consequences of E-Cigarettes from the United States NASEM was accepted as reflective of evidence to mid-2017. A search for papers subsequently published in peer-reviewed journals was conducted in August 2018. A small number of robust and important papers published until March 2019 were also identified and included. Groups identified studies that extended, modified or contradicted the NASEM report. A total of 3793 papers were identified and reviewed, with summaries and draft position statements developed and presented to TSANZ membership in April 2019. After feedback from members and external reviewers, a collection of position statements was finalized in December 2019. EC have adverse lung effects and harmful effects of long-term use are unknown. EC are unsuitable consumer products for recreational use, part-substitution for smoking or long-term exclusive use by former smokers. Smokers who require support to quit smoking should be directed towards approved medication in conjunction with behavioural support as having the strongest evidence for efficacy and safety. No specific EC product can be recommended as effective and safe for smoking cessation. Smoking cessation claims in relation to EC should be assessed by established regulators

    Preventive therapy for latent tuberculosis infection—the promise and the challenges

    No full text
    Around one third of the world's population may harbour latent tuberculosis infection (LTBI), an asymptomatic immunological state that confers a heightened risk of subsequently developing tuberculosis (TB). Effectively treating LTBI will be essential if the End TB Strategy is to be realized. This review evaluates the evidence in relation to the effectiveness of preventive antibiotic therapy to treat LTBI due to both drug-susceptible and drug-resistant bacteria. Current national and international preventive therapy guidelines are summarized, as well as ongoing randomized trials evaluating regimens to prevent drug-resistant TB. Populations that may benefit most from screening and treatment for LTBI include close contacts of patients with TB (particularly children under 5 years of age) and individuals with substantial immunological impairment. The risks and benefits of treatment must be carefully balanced for each individual. Electronic decision support tools offer one way in which clinicians can help patients to make informed decisions. Modelling studies indicate that the expanded use of preventive therapy will be essential to achieving substantial reductions in the global TB burden. However, the widespread scale-up of screening and treatment will require careful consideration of cost-effectiveness, while ensuring the drivers of ongoing disease transmission are also addressed

    Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    Get PDF
    <p>A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km(3) neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km(3) of instrumented volume. The effect of a possible lower cutoff is also considered. (C) 2012 Elsevier B.V. All rights reserved.</p>

    COPD and Comorbidities: Relating Mechanisms and Treatment

    No full text
    corecore