78 research outputs found

    European Respiratory Society Statement on Long COVID-19 Follow-Up

    Get PDF
    Patients diagnosed with COVID-19 associated with SARS-CoV-2 infection frequently experience symptom burden post-acute infection or post-hospitalisation. We aim to identify optimal strategies for follow-up care that may positively impact the patient's quality-of-life (QOL).A European Respiratory Society (ERS) Task Force (TF) convened and prioritised eight clinical questions. A targeted search of the literature defined the time line of long COVID-19 as one to six months post infection and identified clinical evidence in the follow-up of patients. Studies meeting the inclusion criteria report an association of characteristics of acute infection with persistent symptoms, thromboembolic events in the follow-up period and evaluations of pulmonary physiology and imaging. Importantly, this statement reviews QOL consequences, symptom burden, disability and home care follow-up. Overall, the evidence for follow-up care for patients with long COVID-19 is limited

    Effects of cigarette smoke on endothelial function of pulmonary arteries in the guinea pig

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by altering the structure and function of pulmonary vessels at early disease stages. The objectives of this study were to evaluate the effects of long-term exposure to cigarette smoke on endothelial function and smooth muscle-cell proliferation in pulmonary arteries of guinea pigs.</p> <p>Methods</p> <p>19 male Hartley guinea pigs were exposed to the smoke of 7 cigarettes/day, 5 days/week, for 3 and 6 months. 17 control guinea pigs were sham-exposed for the same periods. Endothelial function was evaluated in rings of pulmonary artery and aorta as the relaxation induced by ADP. The proliferation of smooth muscle cells and their phenotype in small pulmonary vessels were evaluated by immunohistochemical expression of α-actin and desmin. Vessel wall thickness, arteriolar muscularization and emphysema were assessed morphometrically. The expression of endothelial nitric oxide synthase (eNOS) was evaluated by Real Time-PCR.</p> <p>Results</p> <p>Exposure to cigarette smoke reduced endothelium-dependent vasodilatation in pulmonary arteries (ANOVA p < 0.05) but not in the aorta. Endothelial dysfunction was apparent at 3 months of exposure and did not increase further after 6 months of exposure. Smoke-exposed animals showed proliferation of poorly differentiated smooth muscle cells in small vessels (p < 0.05) after 3 months of exposure. Prolonged exposure resulted in full muscularization of small pulmonary vessels (p < 0.05), wall thickening (p < 0.01) and increased contractility of the main pulmonary artery (p < 0.05), and enlargement of the alveolar spaces. Lung expression of eNOS was decreased in animals exposed to cigarette smoke.</p> <p>Conclusion</p> <p>In the guinea pig, exposure to cigarette smoke induces selective endothelial dysfunction in pulmonary arteries, smooth muscle cell proliferation in small pulmonary vessels and reduced lung expression of eNOS. These changes appear after 3 months of exposure and precede the development of pulmonary emphysema.</p

    Exhaled and arterial levels of endothelin-1 are increased and correlate with pulmonary systolic pressure in COPD with pulmonary hypertension

    Get PDF
    BACKGROUND: Endothelin-1 (ET-1) and Nitric Oxide (NO) are crucial mediators for establishing pulmonary artery hypertension (PAH). We tested the hypothesis that their imbalance might also occur in COPD patients with PAH. METHODS: The aims of the study were to measure exhaled breath condensate (EBC) and circulating levels of ET-1, as well as exhaled NO (FENO) levels by, respectively, a specific enzyme immunoassay kit, and by chemiluminescence analysis in 3 groups of subjects: COPD with PAH (12), COPD only (36), and healthy individuals (15). In order to evaluate pulmonary-artery systolic pressure (PaPs), all COPD patients underwent Echo-Doppler assessment. RESULTS: Significantly increased exhaled and circulating levels of ET-1 were found in COPD with PAH compared to both COPD (p < 0.0001) only, and healthy controls (p < 0.0001). In COPD with PAH, linear regression analysis showed good correlation between ET-1 in EBC and PaPs (r = 0.621; p = 0.031), and between arterial levels of ET-1 and PaPs (r = 0.648; p = 0.022), while arterial levels of ET-1 inversely correlated with FEV1%, (r = -0.59, p = 0.043), and PaPs negatively correlated to PaO2 (r = -0.618; p = 0.032). Significantly reduced levels of FENO were found in COPD associated with PAH, compared to COPD only (22.92 +/- 11.38 vs.35.07 +/- 17.53 ppb; p = 0.03). Thus, we observed an imbalanced output in the breath between ET-1 and NO, as expression of pulmonary endothelium and epithelium impairment, in COPD with PAH compared to COPD only. Whether this imbalance is an early cause or result of PAH due to COPD is still unknown and deserves further investigations

    Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation

    Get PDF
    Background Few studies have investigated the collaborative potential between artificial intelligence (AI) and pulmonologists for diagnosing pulmonary disease. We hypothesised that the collaboration between a pulmonologist and AI with explanations (explainable AI (XAI)) is superior in diagnostic interpretation of pulmonary function tests (PFTs) than the pulmonologist without support. Methods The study was conducted in two phases, a monocentre study (phase 1) and a multicentre intervention study (phase 2). Each phase utilised two different sets of 24 PFT reports of patients with a clinically validated gold standard diagnosis. Each PFT was interpreted without (control) and with XAI's suggestions (intervention). Pulmonologists provided a differential diagnosis consisting of a preferential diagnosis and optionally up to three additional diagnoses. The primary end-point compared accuracy of preferential and additional diagnoses between control and intervention. Secondary end-points were the number of diagnoses in differential diagnosis, diagnostic confidence and inter-rater agreement. We also analysed how XAI influenced pulmonologists’ decisions. Results In phase 1 (n=16 pulmonologists), mean preferential and differential diagnostic accuracy significantly increased by 10.4% and 9.4%, respectively, between control and intervention (p<0.001). Improvements were somewhat lower but highly significant (p<0.0001) in phase 2 (5.4% and 8.7%, respectively; n=62 pulmonologists). In both phases, the number of diagnoses in the differential diagnosis did not reduce, but diagnostic confidence and inter-rater agreement significantly increased during intervention. Pulmonologists updated their decisions with XAI's feedback and consistently improved their baseline performance if AI provided correct predictions. Conclusion A collaboration between a pulmonologist and XAI is better at interpreting PFTs than individual pulmonologists reading without XAI support or XAI alone

    ANALYSIS OF LIFE INSURANCE INVESTMENT COMPOSITION

    Get PDF
    Economic recession and global mettle down have brought the question of insurance company investment to the forefront. Growing attention has shifted to the pattern of investments by the insurance and question of how to evaluate such investments. The aim of this research is to evaluate investment compositions which are made by life insurance companies in Indonesia, as well as to know the effects on the performance of Insurance companies

    Many continuous variables should be analyzed using the relative scale: a case study of β2-agonists for preventing exercise-induced bronchoconstriction

    Get PDF
    BACKGROUND: The relative scale adjusts for baseline variability and therefore may lead to findings that can be generalized more widely. It is routinely used for the analysis of binary outcomes but only rarely for continuous outcomes. Our objective was to compare relative vs absolute scale pooled outcomes using data from a recently published Cochrane systematic review that reported only absolute effects of inhaled β2-agonists on exercise-induced decline in forced-expiratory volumes in 1 s (FEV1). METHODS: From the Cochrane review, we selected placebo-controlled cross-over studies that reported individual participant data (IPD). Reversal in FEV1 decline after exercise was modeled as a mean uniform percentage point (pp) change (absolute effect) or average percent change (relative effect) using either intercept-only or slope-only, respectively, linear mixed-effect models. We also calculated the pooled relative effect estimates using standard random-effects, inverse-variance-weighting meta-analysis using study-level mean effects. RESULTS: Fourteen studies with 187 participants were identified for the IPD analysis. On the absolute scale, β2-agonists decreased the exercise-induced FEV1 decline by 28 pp., and on the relative scale, they decreased the FEV1 decline by 90%. The fit of the statistical model was significantly better with the relative 90% estimate compared with the absolute 28 pp. estimate. Furthermore, the median residuals (5.8 vs. 10.8 pp) were substantially smaller in the relative effect model than in the absolute effect model. Using standard study-level meta-analysis of the same 14 studies, β2-agonists reduced exercise-induced FEV1 decline on the relative scale by a similar amount: 83% or 90%, depending on the method of calculating the relative effect. CONCLUSIONS: Compared with the absolute scale, the relative scale captures more effectively the variation in the effects of β2-agonists on exercise-induced FEV1-declines. The absolute scale has been used in the analysis of FEV1 changes and may have led to sub-optimal statistical analysis in some cases. The choice between the absolute and relative scale should be determined based on biological reasoning and empirical testing to identify the scale that leads to lower heterogeneity.Peer reviewe

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    Get PDF
    [This corrects the article DOI: 10.1186/s13601-016-0116-9.]

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    Get PDF
    [This corrects the article DOI: 10.1186/s13601-016-0116-9.]

    Positioning the principles of precision medicine in care pathways for allergic rhinitis and chronic rhinosinusitis - A EUFOREA-ARIA-EPOS-AIRWAYS ICP statement.

    Get PDF
    Precision medicine (PM) is increasingly recognized as the way forward for optimizing patient care. Introduced in the field of oncology, it is now considered of major interest in other medical domains like allergy and chronic airway diseases, which face an urgent need to improve the level of disease control, enhance patient satisfaction and increase effectiveness of preventive interventions. The combination of personalized care, prediction of treatment success, prevention of disease and patient participation in the elaboration of the treatment plan is expected to substantially improve the therapeutic approach for individuals suffering from chronic disabling conditions. Given the emerging data on the impact of patient stratification on treatment outcomes, European and American regulatory bodies support the principles of PM and its potential advantage over current treatment strategies. The aim of the current document was to propose a consensus on the position and gradual implementation of the principles of PM within existing adult treatment algorithms for allergic rhinitis (AR) and chronic rhinosinusitis (CRS). At the time of diagnosis, prediction of success of the initiated treatment and patient participation in the decision of the treatment plan can be implemented. The second-level approach ideally involves strategies to prevent progression of disease, in addition to prediction of success of therapy, and patient participation in the long-term therapeutic strategy. Endotype-driven treatment is part of a personalized approach and should be positioned at the tertiary level of care, given the efforts needed for its implementation and the high cost of molecular diagnosis and biological treatment
    corecore