364 research outputs found

    Low mass fraction impregnation with graphene oxide (GO) enhances thermo-physical properties of paraffin for heat storage applications

    Get PDF
    Whereas previous researchers analyzed the thermal behavior of paraffin waxes impregnated with graphene oxide nanoparticles (P-GONP) at high mass fraction ( > 1%), this paper analyzes behavior and stability at only 0.3% mass fraction. GONP was prepared by Hummer’s method. The morphology was studied using scanning electron microscope (SEM), transmission electron microscope (TEM), X-Ray diffraction (XRD) and Fourier Transformation-Infrared (FT-IR) Spectrometer and the thermal properties were measured using laser flash analyser (LFA), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and thermal cycling. LFA showed a 101.2% and 94.5% increase in the thermal conductivity of P-GONP compared to pure paraffin (P) in solid and liquid state respectively. Melting and solidifying temperatures and latent heat were found to be 63.5, 59 °C & 102 kJ/kg and 57.5, 56 °C & 64.7 kJ/kg for P and P-GONP respectively. Thermal cycling over 4000 cycles showed that P-GONP was 27% more stable than P. The latent heat was 64.7 kJ/kg, a 36.5% deterioration compared to virgin paraffin. Compared against higher mass fraction impregnation, lower mass fraction P-GONP was found to have almost equivalent thermo-physical properties (namely thermal conductivity, melting and solidifying characteristics, thermo-chemical stability and reliability) while providing considerable cost saving

    Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture

    Get PDF
    Carbon dioxide (CO2) emitted from conventional coal-based power plants is a growing concern for the environment. Chemical looping combustion (CLC), pre-combustion and oxy-fuel combustion are promising CO2 capture technologies which allow clean electricity generation from coal in an integrated gasification combined cycle (IGCC) power plant. This work compares the characteristics of the above three capture technologies to those of a conventional IGCC plant without CO2 capture. CLC technology is also investigated for two different process configurations—(i) an integrated gasification combined cycle coupled with chemical looping combustion (IGCC–CLC), and (ii) coal direct chemical looping combustion (CDCLC)—using exergy analysis to exploit the complete potential of CLC. Power output, net electrical efficiency and CO2 capture efficiency are the key parameters investigated for the assessment. Flowsheet models of five different types of IGCC power plants, (four with and one without CO2 capture), were developed in the Aspen plus simulation package. The results indicate that with respect to conventional IGCC power plant, IGCC–CLC exhibited an energy penalty of 4.5%, compared with 7.1% and 9.1% for pre-combustion and oxy-fuel combustion technologies, respectively. IGCC–CLC and oxy-fuel combustion technologies achieved an overall CO2 capture rate of ∼100% whereas pre-combustion technology could capture ∼94.8%. Modification of IGCC–CLC into CDCLC tends to increase the net electrical efficiency by 4.7% while maintaining 100% CO2 capture rate. A detailed exergy analysis performed on the two CLC process configurations (IGCC–CLC and CDCLC) and conventional IGCC process demonstrates that CLC technology can be thermodynamically as efficient as a conventional IGCC process

    Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene

    Get PDF
    Catalytic steam reforming of waste high density polyethylene for the production of hydrogen/syngas has been investigated using different zeolite supported nickel catalysts in a two-stage pyrolysis-catalytic steam reforming reactor system. Experiments were conducted into the influence of the type of zeolite where Ni/ZSM5-30, Ni/β-zeolite-25 and the Ni/Y-zeolite-30 catalysts were compared in relation to hydrogen and syngas production. Results showed that the Ni/ZSM5-30 catalyst generated the maximum syngas production of 100.72 mmol g‾¹ plastic , followed by the Ni/β-zeolite-25 and Ni/Y-zeolite-30 catalyst. In addition, the ZSM-5 supported nickel catalyst showed excellent coke resistance and thermal stability. It was found that the Y type zeolite supported nickel catalyst possessed narrower pores than the other catalysts, which in turn, promoted coke deactivation of the catalyst. Large amounts of filamentous carbons were observed on the surface of the Ni/Y-zeolite-30 catalyst from scanning electron microscope images. In addition, the influence of Si:Al molar ratio for the Ni/ZSM-5 catalysts in relation to hydrogen and syngas yield was inv estigated. The results indicated that hydrogen production was less affected by the Si:Al ratio than the type of zeolite support. Also, the Ni/ZSM5-30 catalyst was further investigated to determine the influence of different process parameters on hydrogen and syngas yield via different reforming temperatures (650, 750, 850 °C) and steam feeding rate (0, 3, 6 g h‾¹). It was found that increasing both the temperature and steam feeding rate favoured hydrogen production from the pyrolysis-catalytic reforming of waste polyethylene. The optimum catalytic performance in terms of syngas production was achieved when the steam feeding rate was 6 g h‾¹ and catalyst temperature was 850 °C in the presence of Ni/ZSM5-30 catalyst, with production of 66.09 mmol H 2 g‾¹(plastic) and 34.63 mmol CO gg‾¹(plastic)

    Demonstration of CO2 conversion to synthetic transport fuel at flue gas concentrations

    Get PDF
    A mixture of 1-and 2-butanol was produced using a stepwise synthesis starting with a methyl halide. The process included a carbon dioxide utilization step to produce an acetate salt which was then converted to the butanol isomers by Claisen condensation of the esterified acetate followed by hydrogenation of the resulting ethyl acetoacetate. Importantly, the CO 2 utilization step uses dry, dilute carbon dioxide (12% CO 2 in nitrogen) similar to those found in post-combustion flue gases. The work has shown that the Grignard reagent has a slow rate of reaction with oxygen in comparison to carbon dioxide, meaning that the costly purification step usually associated with carbon capture technologies can be omitted using this direct capture-conversion technique. Butanol isomers are useful as direct drop-in replacement fuels for gasoline due to their high octane number, higher energy density, hydrophobicity, and low corrosivity in existing petrol engines. An energy analysis shows the process to be exothermic from methanol to butanol; however, energy is required to regenerate the active magnesium metal from the halide by-product. The methodology is important as it allows electrical energy, which is difficult to store using batteries over long periods of time, to be stored as a liquid fuel that fits entirely with the current liquid fuels infrastructure. This means that renewable, weather-dependent energy can be stored across seasons, for example, production in summer with consumption in winter. It also helps to avoid new fossil carbon entering the supply chain through the utilization of carbon dioxide that would otherwise be emitted. As methanol has also been shown to be commercially produced from CO 2 , this adds to the prospect of the general decarbonization of the transport fuels sector. Furthermore, as the conversion of CO 2 to butanol requires significantly less hydrogen than CO 2 to octanes, there is a potentially reduced burden on the so-called hydrogen economy

    A Simple Approach to Fourth Generation Effects in B→Xsℓ+ℓ−B\to X_s \ell^+ \ell^- Decay

    Full text link
    In a scenario in which fourth generation fermions exist, we study effects of new physics on the differential decay width, forward-backward asymmetry AFBA_{\text{FB}} and integrated branching ratio for B→Xsℓ+ℓ−B\to X_s \ell^+ \ell^- decay with (ℓ=e,μ)(\ell=e,\mu). Prediction of the new physics on the mentioned quantities essentially differs from the Standard Model results, in certain regions of the parameter space, enhancement of new physics on the above mentioned physical quantities can yield values as large as two times of the SM predictions, whence present limits of experimental measurements of branching ratio is spanned, contraints of the new physics can be extracted. For the fourth generation CKM factor Vt′b∗Vt′sV_{t^\prime b}^\ast V_{t^\prime s} we use ±10−2\pm 10^{-2} and ±10−3\pm 10^{-3} ranges, take into consideration the possibility of a complex phase where it may bring sizable contributions, obtained no significant dependency on the imaginary part of the new CKM factor. For the above mentioned quantities with a new family, deviations from the SM are promising, can be used as a probe of new physics.Comment: 9 pages aps forma

    MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport

    Get PDF
    We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone array structures with tunable aspect ratios and interspacings. Electrochemical characterization of these arrays via the hydrogen evolution reaction (HER), using a low proton concentration electrolyte (2 mM HClO4, 0.1 M NaClO4) to reveal morphology-dependent mass transport features at the proton diffusion-controlled region, show significant changes in electrocatalytic behaviour at both WS2 and MoS2: notably onset potential shifts of 100 and 200 mV, and Tafel slope decreases of 50 and 120 mV dec−1 respectively. These improvements vary according to the geometry of the arrays and the availability of catalytic edge sites, and thus the observed electrochemical behaviour can be rationalized via kinetic and mass transport effects

    Armodafinil improves wakefulness and long-term episodic memory in nCPAP-adherent patients with excessive sleepiness associated with obstructive sleep apnea

    Get PDF
    Residual excessive sleepiness (ES) and impaired cognition can occur despite effective and regular nasal continuous positive airway pressure (nCPAP) therapy in some patients with obstructive sleep apnea (OSA). A pooled analysis of two 12-week, randomized, double-blind studies in nCPAP-adherent patients with ES associated with OSA evaluated the effect of armodafinil on wakefulness and cognition. Three hundred and ninety-one patients received armodafinil (150 or 250 mg) and 260 patients received placebo once daily for 12 weeks. Efficacy assessments included the Maintenance of Wakefulness Test (MWT), Cognitive Drug Research cognitive performance battery, Epworth Sleepiness Scale, and Brief Fatigue Inventory. Adverse events were monitored. Armodafinil increased mean MWT sleep latency from baseline to final visit by 2.0 min vs a decrease of 1.5 min with placebo (P < 0.0001). Compared with placebo, armodafinil significantly improved quality of episodic secondary memory (P < 0.05) and patients’ ability to engage in activities of daily living (P < 0.0001) and reduced fatigue (P < 0.01). The most common adverse events were headache, nausea, and insomnia. Armodafinil did not adversely affect desired nighttime sleep, and nCPAP use remained high (approximately 7 h/night). Adjunct treatment with armodafinil significantly improved wakefulness, long-term memory, and patients’ ability to engage in activities of daily living in nCPAP-adherent individuals with ES associated with OSA. Armodafinil also reduced patient-reported fatigue and was well tolerated

    Nanocomposite electrospun nanofiber membranes for environmental remediation

    Get PDF
    Rapid worldwide industrialization and population growth is going to lead to an extensive environmental pollution. Therefore, so many people are currently suffering from the water shortage induced by the respective pollution, as well as poor air quality and a huge fund is wasted in the world each year due to the relevant problems. Environmental remediation necessitates implementation of novel materials and technologies, which are cost and energy efficient. Nanomaterials, with their unique chemical and physical properties, are an optimum solution. Accordingly, there is a strong motivation in seeking nano-based approaches for alleviation of environmental problems in an energy efficient, thereby, inexpensive manner. Thanks to a high porosity and surface area presenting an extraordinary permeability (thereby an energy efficiency) and selectivity, respectively, nanofibrous membranes are a desirable candidate. Their functionality and applicability is even promoted when adopting a nanocomposite strategy. In this case, specific nanofillers, such as metal oxides, carbon nanotubes, precious metals, and smart biological agents, are incorporated either during electrospinning or in the post-processing. Moreover, to meet operational requirements, e.g., to enhance mechanical stability, decrease of pressure drop, etc., nanofibrous membranes are backed by a microfibrous non-woven forming a hybrid membrane. The novel generation of nanocomposite/hybrid nanofibrous membranes can perform extraordinarily well in environmental remediation and control. This reality justifies authoring of this review paper
    • …
    corecore