260 research outputs found

    Late-onset erythromelalgia in a previously healthy young woman: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Erythromelalgia is a rare disorder characterized by episodic erythema and burning pain, which commonly involves the extremities. We present a case of late onset erythromelalgia in a previously healthy young woman and briefly review the literature. Our patient's case also has additional uncommon features not reported previously.</p> <p>Case presentation</p> <p>A 33-year-old previously healthy Caucasian woman presented with complaints of episodic burning pain and flushing occurring in a central distribution involving her face, ears, upper chest and, occasionally, her upper extremities. Her symptoms were triggered by lying down or warm temperature exposure and were relieved by cooling measures. Extensive diagnostic work-up looking for secondary causes for the symptoms was negative and the diagnosis of erythromelalgia was made based on details provided in her clinical history supported by raised temperature in the affected area measured by thermography during a symptomatic episode. The patient did not respond to pharmacological therapy or surgical sympathectomy. She was advised on lifestyle modification to avoid activities which triggered her symptoms. She was hypothermic with a core temperature between 92 and 95°F. She also had premature ovarian failure, which had not previously been reported.</p> <p>Conclusion</p> <p>Erythromelalgia is a rare disorder of unknown cause. There is no confirmatory diagnostic test; diagnosis is based on details provided in the patient's medical history and physical examination during the episodes. For those affected, this disorder leads to significant long-term morbidity and unfortunately, to date, no definitive therapy is available except for lifestyle modification.</p

    Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy

    Get PDF
    Objective Recently, de novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathies. Functional studies on the first described case demonstrated gain-of-function effects of the mutation. We describe a novel de novo mutation of SCN8A in a patient with epileptic encephalopathy, and functional characterization of the mutant protein. Design Whole exome sequencing was used to discover the variant. We generated a mutant cDNA, transfected HEK293 cells, and performed Western blotting to assess protein stability. To study channel functional properties, patch-clamp experiments were carried out in transfected neuronal ND7/23 cells. Results The proband exhibited seizure onset at 6 months of age, diffuse brain atrophy, and more profound developmental impairment than the original case. The mutation p.Arg233Gly in the voltage sensing transmembrane segment D1S4 was present in the proband and absent in both parents. This mutation results in a temperature-sensitive reduction in protein expression as well as reduced sodium current amplitude and density and a relative increased response to a slow ramp stimulus, though this did not result in an absolute increased current at physiological temperatures. Conclusion The new de novo SCN8A mutation is clearly deleterious, resulting in an unstable protein with reduced channel activity. This differs from the gain-of-function attributes of the first SCN8A mutation in epileptic encephalopathy, pointing to heterogeneity of mechanisms. Since Nav1.6 is expressed in both excitatory and inhibitory neurons, a differential effect of a loss-of-function of Nav1.6 Arg223Gly on inhibitory interneurons may underlie the epilepsy phenotype in this patient

    Antisense-Mediated Knockdown of NaV1.8, but Not NaV1.9, Generates Inhibitory Effects on Complete Freund's Adjuvant-Induced Inflammatory Pain in Rat

    Get PDF
    Tetrodotoxin-resistant (TTX-R) sodium channels NaV1.8 and NaV1.9 in sensory neurons were known as key pain modulators. Comparing with the widely reported NaV1.8, roles of NaV1.9 on inflammatory pain are poorly studied by antisense-induced specific gene knockdown. Here, we used molecular, electrophysiological and behavioral methods to examine the effects of antisense oligodeoxynucleotide (AS ODN) targeting NaV1.8 and NaV1.9 on inflammatory pain. Following complete Freund's adjuvant (CFA) inflammation treatment, NaV1.8 and NaV1.9 in rat dorsal root ganglion (DRG) up-regulated mRNA and protein expressions and increased sodium current densities. Immunohistochemical data demonstrated that NaV1.8 mainly localized in medium and small-sized DRG neurons, whereas NaV1.9 only expressed in small-sized DRG neurons. Intrathecal (i.t.) delivery of AS ODN was used to down-regulate NaV1.8 or NaV1.9 expressions confirmed by immunohistochemistry and western blot. Unexpectedly, behavioral tests showed that only NaV1.8 AS ODN, but not NaV1.9 AS ODN could reverse CFA-induced heat and mechanical hypersensitivity. Our data indicated that TTX-R sodium channels NaV1.8 and NaV1.9 in primary sensory neurons played distinct roles in CFA-induced inflammatory pain and suggested that antisense oligodeoxynucleotide-mediated blocking of key pain modulator might point toward a potential treatment strategy against certain types of inflammatory pain

    A gain-of-function sodium channel beta 2-subunit mutation in painful diabetic neuropathy

    Get PDF
    Diabetes mellitus (DM) is a global challenge with many diverse health sequelae, of which diabetic peripheral neuropathy (DPN) is one of the most common. A substantial number of patients with DPN develop chronic pain, but the genetic and epigenetic factors that predispose DPN patients to develop neuropathic pain are poorly understood. Recent targeted genetic studies have identified mutations in \u3b1-subunits of voltage-gated sodium channels (Navs) in patients with painful DPN. Mutations in proteins that regulate trafficking or functional properties of Navs could expand the spectrum of patients with Nav-related peripheral neuropathies. The auxiliary sodium channel \u3b2-subunits (\u3b21-4) have been reported to increase current density, alter inactivation kinetics, and modulate subcellular localization of Nav. Mutations in \u3b2-subunits have been associated with several diseases, including epilepsy, cancer, and diseases of the cardiac conducting system. However, mutations in \u3b2-subunits have never been shown previously to contribute to neuropathic pain. We report here a patient with painful DPN and negative genetic screening for mutations in SCN9A, SCN10A, and SCN11A-genes encoding sodium channel \u3b1-subunit that have been previously linked to the development of neuropathic pain. Genetic analysis revealed an aspartic acid to asparagine mutation, D109N, in the \u3b22 subunit. Functional analysis using current-clamp revealed that the \u3b22-D109N rendered dorsal root ganglion neurons hyperexcitable, especially in response to repetitive stimulation. Underlying the hyperexcitability induced by the \u3b22 subunit mutation, as evidenced by voltage clamp analysis, we found a depolarizing shift in the voltage-dependence of Nav1.7 fast-inactivation and reduced use-dependent inhibition of the Nav1.7 channel

    Familial neuralgia of occipital and intermedius nerves in a Chinese family

    Get PDF
    Cranial nerve neuralgia usually occurs sporadically. Nonetheless, familial cases of trigeminal neuralgia are not uncommon with a reported incidence of 1–2%, suggestive of an autosomal dominant inheritance. In contrast, familial occipital neuralgia is rarely reported with only one report in the literature. We present a Chinese family with five cases of occipital and nervus intermedius neuralgia alone or in combination in three generations. All persons afflicted with occipital neuralgia have suffered from paroxysmal ‘electric wave’-like pain for years. In the first generation, the father (index patient) was affected, in the second generation all his three daughters (with two sons spared) and in the third generation a daughter’s male offspring is affected. This familial pattern suggests an X-linked dominant or an autosomal dominant inheritance mode

    Neurological perspectives on voltage-gated sodium channels

    Get PDF

    Gene duplications and evolution of vertebrate voltage-gated sodium channels

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Molecular Evolution 63 (2006): 208-221, doi:10.1007/s00239-005-0287-9.Voltage-gated sodium channels underlie action potential generation in excitable tissue. To establish the evolutionary mechanisms that shaped the vertebrate sodium channel a-subunit (SCNA) gene family and their encoded Nav1 proteins, we identified all SCNA genes in several teleost species. Molecular cloning revealed that teleosts have eight SCNA genes, comparable to the number in another vertebrate lineage, mammals. Prior phylogenetic analyses had indicated that teleosts and tetrapods share four monophyletic groups of SCNA genes and that tandem duplications selectively expanded the number of genes in two of the four mammalian groups. However, the number of genes in each group varies between teleosts and tetrapods suggesting different evolutionary histories in the two vertebrate lineages. Our findings from phylogenetic analysis and chromosomal mapping of Danio rerio genes indicate that tandem duplications are an unlikely mechanism for generation of the extant teleost SCNA genes. Instead, analysis of other closely mapped genes in D. rerio supports the hypothesis that a whole genome duplication was involved in expansion of the SCNA gene family in teleosts. Interestingly, despite their different evolutionary histories, mRNA analyses demonstrated a conservation of expression patterns for SCNA orthologues in teleosts and tetrapods, suggesting functional conservation.The authors’ work was supported by NIH grants (NS 38937; AEN, ADT and ABR, NS 25513; HHZ and YL and NSF IBN 0236147; MCJ)

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs
    corecore