22 research outputs found

    Scanning mutagenesis of a Janus-faced atracotoxin reveals a bipartite surface patch that is essential for neurotoxic function

    Get PDF
    The Janus-faced atracotoxins (J-ACTXs) are a family of insect-specific excitatory neurotoxins isolated from the venom of Australian funnel web spiders. In addition to a strikingly asymmetric distribution of charged residues, from which their name is derived, these toxins contain an extremely rare vicinal disulfide bond. To shed light on the mechanism of action of these toxins and to enhance their utility as lead compounds for insecticide development, we developed a recombinant expression system for the prototypic family member, J-ACTX-Hv1c, and mapped the key functional residues using site-directed mutagenesis. An alanine scan using a panel of 24 mutants provided the first complete map of the bioactive surface of a spider toxin and revealed that the entire J-ACTX-Hv1c pharmacophore is restricted to seven residues that form a bipartite surface patch on one face of the toxin. However, the primary pharmacophore, or hot spot, is formed by just five residues (Arg(8), Pro(9), Tyr(31), and the Cys(13)-Cys(14) vicinal disulfide). The Arg(8)-Tyr(31) diad in J-ACTX-Hv1c superimposes closely on the Lys-(Tyr/Phe) diad that is spatially conserved across a range of structurally dissimilar K+ channel blockers, which leads us to speculate that the J-ACTXs might target an invertebrate K+ channel

    CgNa, a type I toxin from the giant Caribbean sea anemone Condylactis gigantea shows structural similarities to both type I and II toxins, as well as distinctive structural and functional properties1

    No full text
    CgNa (Condylactis gigantea neurotoxin) is a 47-amino-acid- residue toxin from the giant Caribbean sea anemone Condylactis gigantea. The structure of CgNa, which was solved by 1H-NMR spectroscopy, is somewhat atypical and displays significant homology with both type I and II anemone toxins. CgNa also displays a considerable number of exceptions to the canonical structural elements that are thought to be essential for the activity of this group of toxins. Furthermore, unique residues in CgNa define a characteristic structure with strong negatively charged surface patches. These patches disrupt a surface-exposed cluster of hydrophobic residues present in all anemone-derived toxins described to date. A thorough characterization by patch–clamp analysis using rat DRG (dorsal root ganglion) neurons indicated that CgNa preferentially binds to TTX-S (tetrodotoxin-sensitive) voltage-gated sodium channels in the resting state. This association increased the inactivation time constant and the rate of recovery from inactivation, inducing a significant shift in the steady state of inactivation curve to the left. The specific structural features of CgNa may explain its weaker inhibitory capacity when compared with the other type I and II anemone toxins
    corecore