38 research outputs found

    Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial

    Get PDF
    Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial which acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie-Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of "quantum" superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted, all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.Comment: 10 pages, 5 figures, final version, accepted for publication in Journal of Applied Physic

    Brachypodium distachyon grain: identification and subcellular localization of storage proteins

    Get PDF
    Seed storage proteins are of great importance in nutrition and in industrial transformation because of their functional properties. Brachypodium distachyon has been proposed as a new model plant to study temperate cereals. The protein composition of Brachypodium grain was investigated by separating the proteins on the basis of their solubility combined with a proteomic approach. Salt-soluble proteins as well as salt-insoluble proteins separated by two-dimensional gel electrophoresis revealed 284 and 120 spots, respectively. Proteins from the major spots were sequenced by mass spectrometry and identified by searching against a Brachypodium putative protein database. Our analysis detected globulins and prolamins but no albumins. Globulins were represented mainly by the 11S type and their solubility properties corresponded to the glutelin found in rice. An in silico search for storage proteins returned more translated genes than expressed products identified by mass spectrometry, particularly in the case of prolamin type proteins, reflecting a strong expression of globulins at the expense of prolamins. Microscopic examination of endosperm cells revealed scarce small-size starch granules surrounded by protein bodies containing 11S globulins. The presence of protein bodies containing glutelins makes B. distachyon closer to rice or oat than to wheat endosperm

    Biochemical interaction analysis on ATR devices: a wet chemistry approach for surface functionalization.

    No full text
    A new generic device suitable for the investigation of ligand-receptor interactions is presented. In particular, the research focused on optical waveguides constituted by an attenuated total internal reflection (ATR) element, transparent in the infrared and whose surfaces were activated in view of covalently binding a receptor. Silicon and germanium ATR elements were considered. The original method is based on the grafting of bifunctional spacer molecules directly at the surface of the germanium crystal, avoiding the deposition of an intermediate metal layer. The grafting of these binding molecules (under their N-hydroxysuccinimidyl ester forms) was performed either by wet chemistry or by photochemistry. The functionalized surfaces, which allow the binding of molecules bearing peripherical NH2 groups, were successfully used, e.g. for the detection of proteins (streptavidin) or of small molecules (biotin). In the latter case, the biotin was readily detected for concentrations as low as 10(-12) M.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Ligand-receptor interactions in complex media: a new type of biosensors for the detection of coagulation factor VIII.

    No full text
    Detection of receptor-ligand interaction in complex media remains a challenging issue. We report experimental results demonstrating the specific detection of the coagulation factor VIII in the presence of a large excess of other proteins using the new BIA-ATR technology based on attenuated total reflection Fourier transform infrared spectroscopy. The principle of the detection is related to the ability of factor VIII molecules to bind to lipid membranes containing at least 8% phosphatidylserine. Several therapeutic concentrates of factor VIII were analyzed and the binding of the coagulation factor was monitored as a function of time. We show that a non-specific adsorption of stabilizing agents (typically, von Willebrand factor and human serum albumin) may be avoided by controlling the geometry of the ATR element. A linear response of the sensors as a function of the factor VIII concentration is described for different lipid membrane compositions.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Quantification of the methylation at the GNAS locus identifies subtypes of sporadic pseudohypoparathyroidism type Ib

    Get PDF
    Particulate matter (PM) is a class of malicious environmental pollutants known to be detrimental to human health. Regulatory efforts aimed at curbing PM levels in different countries often require high resolution space–time maps that can identify red-flag regions exceeding statutory concentration limits. Continuous spatio-temporal Gaussian Process (GP) models can deliver maps depicting predicted PM levels and quantify predictive uncertainty. However, GP-based approaches are usually thwarted by computational challenges posed by large datasets. We construct a novel class of scalable Dynamic Nearest Neighbor Gaussian Process (DNNGP) models that can provide a sparse approximation to any spatio-temporal GP (e.g., with nonseparable covariance structures). The DNNGP we develop here can be used as a sparsity-inducing prior for spatio-temporal random effects in any Bayesian hierarchical model to deliver full posterior inference. Storage and memory requirements for a DNNGP model are linear in the size of the dataset, thereby delivering massive scalability without sacrificing inferential richness. Extensive numerical studies reveal that the DNNGP provides substantially superior approximations to the underlying process than low-rank approximations. Finally, we use the DNNGP to analyze a massive air quality dataset to substantially improve predictions of PM levels across Europe in conjunction with the LOTOS-EUROS chemistry transport models (CTMs). © Institute of Mathematical Statistics, 2016

    Association of quality of life with structural, functional and molecular brain imaging in community-dwelling older adults.

    Get PDF
    BACKGROUND: As the population ages, maintaining mental health and well-being of older adults is a public health priority. Beyond objective measures of health, self-perceived quality of life (QoL) is a good indicator of successful aging. In older adults, it has been shown that QoL is related to structural brain changes. However, QoL is a multi-faceted concept and little is known about the specific relationship of each QoL domain to brain structure, nor about the links with other aspects of brain integrity, including white matter microstructure, brain perfusion and amyloid deposition, which are particularly relevant in aging. Therefore, we aimed to better characterize the brain biomarkers associated with each QoL domain using a comprehensive multimodal neuroimaging approach in older adults. METHODS: One hundred and thirty-five cognitively unimpaired older adults (mean age ± SD: 69.4 ± 3.8 y) underwent structural and diffusion magnetic resonance imaging, together with early and late florbetapir positron emission tomography scans. QoL was assessed using the brief version of the World Health Organization's QoL instrument, which allows measuring four distinct domains of QoL: self-perceived physical health, psychological health, social relationships and environment. Multiple regression analyses were carried out to identify the independent global neuroimaging predictor(s) of each QoL domain, and voxel-wise analyses were then conducted with the significant predictor(s) to highlight the brain regions involved. Age, sex, education and the other QoL domains were entered as covariates in these analyses. Finally, forward stepwise multiple regressions were conducted to determine the specific items of the relevant QoL domain(s) that contributed the most to these brain associations. RESULTS: Only physical health QoL was associated with global neuroimaging values, specifically gray matter volume and white matter mean kurtosis, with higher physical health QoL being associated with greater brain integrity. These relationships were still significant after correction for objective physical health and physical activity measures. No association was found with global brain perfusion or global amyloid deposition. Voxel-wise analyses revealed that the relationships with physical health QoL concerned the anterior insula and ventrolateral prefrontal cortex, and the corpus callosum, corona radiata, inferior frontal white matter and cingulum. Self-perceived daily living activities and self-perceived pain and discomfort were the items that contributed the most to these associations with gray matter volume and white matter mean kurtosis, respectively. CONCLUSIONS: Better self-perceived physical health, encompassing daily living activities and pain and discomfort, was the only QoL domain related to brain structural integrity including higher global gray matter volume and global white matter microstructural integrity in cognitively unimpaired older adults. The relationships involved brain structures belonging to the salience network, the pain pathway and the empathy network. While previous studies showed a link between objective measures of physical health, our findings specifically highlight the relevance of monitoring and promoting self-perceived physical health in the older population. Longitudinal studies are needed to assess the direction and causality of the relationships between QoL and brain integrity

    Nitric oxide-mediated immunosuppression following murine Echinococcus multilocularis infection

    No full text
    In some parasitic infections immunosuppression is a prominent characteristic of the host–parasite interplay. We have used a murine alveolar echinococcosis (AE) model in susceptible C57BL/6 mice to document a suppressed splenocyte proliferative response to concanavalin A (Con A) at the early (1-month) stage and to Echinococcus multilocularis-crude antigen (Emc-antigen) at the late (4–6-month) stage of chronic infection. Despite proliferative suppression, splenic cytokine production [interleukin-2 (IL-2), IL-4 and interferon-γ (IFN-γ)] in response to Con A or Emc-antigen stimulation was not suppressed at 1 month postinfection (p.i.). Infection resulted in a strong Mac-1+ cell infiltration of the peritoneal cavity and spleen. Peritoneal cells (PEC) from mice infected at the 1-month stage were rich in macrophages and expressed significantly higher levels of transcripts for the inflammatory cytokine IL-1β and for tumour necrosis factor-α and inducible nitric oxide synthase (iNOS), when compared with PEC from non-infected control mice. Conversely, the IL-10 transcript level remained low and did not change during infection. Spleen cells supplemented with PEC from infected mice induced a marked increase in the levels of nitrite in response to Con A and Emc-antigen stimulation, and also a complete suppression of splenic proliferation. The spleen cells from late-stage infected mice expressed only background levels of IL-10 but greatly increased levels of iNOS, when compared with normal spleen cells. This observation correlated with the immunosuppression demonstrated at the late stage of murine AE. Furthermore, the suppressed splenic proliferative responses observed at the early and late stage were reversed to a large extent by the addition of NG-monomethyl-l-arginine and partially by anti-IFN-γ. Thus, our results demonstrated that the immunosuppression observed in chronic AE was not primarily dependent on IL-10 but rather on nitric oxide production by macrophages from infected animals
    corecore