88 research outputs found

    A novel role for Lef-1, a central transcription mediator of Wnt signaling, in leukemogenesis

    Get PDF
    Canonical Wnt signaling is critically involved in normal hematopoietic development and the self-renewal process of hematopoietic stem cells (HSCs). Deregulation of this pathway has been linked to a large variety of cancers, including different subtypes of leukemia. Lef-1 is a major transcription factor of this pathway and plays a pivotal role in lymphoid differentiation as well as in granulopoiesis. Here, we demonstrate Lef-1 expression in murine HSCs as well as its expression in human leukemia. Mice transplanted with bone marrow retrovirally transduced to express Lef-1 or a constitutive active Lef-1 mutant showed a severe disturbance of normal hematopoietic differentiation and finally developed B lymphoblastic and acute myeloid leukemia (AML). Lef-1–induced AMLs were characterized by immunoglobulin (Ig) DH-JH rearrangements and a promiscuous expression of lymphoid and myeloid regulatory factors. Furthermore, single cell experiments and limiting dilution transplantation assays demonstrated that Lef-1–induced AML was propagated by a leukemic stem cell with lymphoid characteristics displaying Ig DH-JH rearrangements and a B220+ myeloid marker− immunophenotype. These data indicate a thus far unknown role of Lef-1 in the biology of acute leukemia, pointing to the necessity of balanced Lef-1 expression for an ordered hematopoietic development

    The PZP Domain of AF10 Senses Unmodified H3K27 to Regulate DOT1L-Mediated Methylation of H3K79

    Get PDF
    AF10, a DOT1L cofactor, is required for H3K79 methylation and cooperates with DOT1L in leukemogenesis. However, the molecular mechanism by which AF10 regulates DOT1L-mediated H3K79 methylation is not clear. Here we report that AF10 contains a "reader" domain that couples unmodified H3K27 recognition to H3K79 methylation. An AF10 region consisting of a PHD finger-Zn knuckle-PHD finger (PZP) folds into a single module that recognizes amino acids 22-27 of H3, and this interaction is abrogated by H3K27 modification. Structural studies reveal that H3 binding triggers rearrangement of the PZP module to form an H3(22-27)-accommodating channel and that the unmodified H3K27 side chain is encased in a compact hydrogen-bond acceptor-lined cage. In cells, PZP recognition of H3 is required for H3K79 dimethylation, expression of DOT1L-target genes, and proliferation of DOT1L-addicted leukemic cells. Together, our results uncover a pivotal role for H3K27-via readout by the AF10 PZP domain-in regulating the cancer-associated enzyme DOT1L

    Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis.

    Get PDF
    BACKGROUND: Substantial outbreaks of yellow fever in Angola and Brazil in the past 2 years, combined with global shortages in vaccine stockpiles, highlight a pressing need to assess present control strategies. The aims of this study were to estimate global yellow fever vaccination coverage from 1970 through to 2016 at high spatial resolution and to calculate the number of individuals still requiring vaccination to reach population coverage thresholds for outbreak prevention. METHODS: For this adjusted retrospective analysis, we compiled data from a range of sources (eg, WHO reports and health-service-provider registeries) reporting on yellow fever vaccination activities between May 1, 1939, and Oct 29, 2016. To account for uncertainty in how vaccine campaigns were targeted, we calculated three population coverage values to encompass alternative scenarios. We combined these data with demographic information and tracked vaccination coverage through time to estimate the proportion of the population who had ever received a yellow fever vaccine for each second level administrative division across countries at risk of yellow fever virus transmission from 1970 to 2016. FINDINGS: Overall, substantial increases in vaccine coverage have occurred since 1970, but notable gaps still exist in contemporary coverage within yellow fever risk zones. We estimate that between 393·7 million and 472·9 million people still require vaccination in areas at risk of yellow fever virus transmission to achieve the 80% population coverage threshold recommended by WHO; this represents between 43% and 52% of the population within yellow fever risk zones, compared with between 66% and 76% of the population who would have required vaccination in 1970. INTERPRETATION: Our results highlight important gaps in yellow fever vaccination coverage, can contribute to improved quantification of outbreak risk, and help to guide planning of future vaccination efforts and emergency stockpiling. FUNDING: The Rhodes Trust, Bill & Melinda Gates Foundation, the Wellcome Trust, the National Library of Medicine of the National Institutes of Health, the European Union's Horizon 2020 research and innovation programme

    Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    Get PDF
    Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5–15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur

    Mapping male circumcision for HIV prevention efforts in sub-Saharan Africa

    Get PDF
    Background HIV remains the largest cause of disease burden among men and women of reproductive age in sub-Saharan Africa. Voluntary medical male circumcision (VMMC) reduces the risk of female-to-male transmission of HIV by 50–60%. The World Health Organization (WHO) and Joint United Nations Programme on HIV/AIDS (UNAIDS) identified 14 priority countries for VMMC campaigns and set a coverage goal of 80% for men ages 15–49. From 2008 to 2017, over 18 million VMMCs were reported in priority countries. Nonetheless, relatively little is known about local variation in male circumcision (MC) prevalence. Methods We analyzed geo-located MC prevalence data from 109 household surveys using a Bayesian geostatistical modeling framework to estimate adult MC prevalence and the number of circumcised and uncircumcised men aged 15–49 in 38 countries in sub-Saharan Africa at a 5 × 5-km resolution and among first administrative level (typically provinces or states) and second administrative level (typically districts or counties) units. Results We found striking within-country and between-country variation in MC prevalence; most (12 of 14) priority countries had more than a twofold difference between their first administrative level units with the highest and lowest estimated prevalence in 2017. Although estimated national MC prevalence increased in all priority countries with the onset of VMMC campaigns, seven priority countries contained both subnational areas where estimated MC prevalence increased and areas where estimated MC prevalence decreased after the initiation of VMMC campaigns. In 2017, only three priority countries (Ethiopia, Kenya, and Tanzania) were likely to have reached the MC coverage target of 80% at the national level, and no priority country was likely to have reached this goal in all subnational areas. Conclusions Despite MC prevalence increases in all priority countries since the onset of VMMC campaigns in 2008, MC prevalence remains below the 80% coverage target in most subnational areas and is highly variable. These mapped results provide an actionable tool for understanding local needs and informing VMMC interventions for maximum impact in the continued effort towards ending the HIV epidemic in sub-Saharan Africa

    Variation in Childhood Diarrheal Morbidity and Mortality in Africa, 2000-2015.

    Get PDF
    BACKGROUND: Diarrheal diseases are the third leading cause of disease and death in children younger than 5 years of age in Africa and were responsible for an estimated 30 million cases of severe diarrhea (95% credible interval, 27 million to 33 million) and 330,000 deaths (95% credible interval, 270,000 to 380,000) in 2015. The development of targeted approaches to address this burden has been hampered by a paucity of comprehensive, fine-scale estimates of diarrhea-related disease and death among and within countries. METHODS: We produced annual estimates of the prevalence and incidence of diarrhea and diarrhea-related mortality with high geographic detail (5 km2) across Africa from 2000 through 2015. Estimates were created with the use of Bayesian geostatistical techniques and were calibrated to the results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016. RESULTS: The results revealed geographic inequality with regard to diarrhea risk in Africa. Of the estimated 330,000 childhood deaths that were attributable to diarrhea in 2015, more than 50% occurred in 55 of the 782 first-level administrative subdivisions (e.g., states). In 2015, mortality rates among first-level administrative subdivisions in Nigeria differed by up to a factor of 6. The case fatality rates were highly varied at the national level across Africa, with the highest values observed in Benin, Lesotho, Mali, Nigeria, and Sierra Leone. CONCLUSIONS: Our findings showed concentrated areas of diarrheal disease and diarrhea-related death in countries that had a consistently high burden as well as in countries that had considerable national-level reductions in diarrhea burden. (Funded by the Bill and Melinda Gates Foundation.)

    Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000-2016: a spatial and temporal modelling study.

    Get PDF
    BACKGROUND: Routine childhood vaccination is among the most cost-effective, successful public health interventions available. Amid substantial investments to expand vaccine delivery throughout Africa and strengthen administrative reporting systems, most countries still require robust measures of local routine vaccine coverage and changes in geographical inequalities over time. METHODS: This analysis drew from 183 surveys done between 2000 and 2016, including data from 881 268 children in 49 African countries. We used a Bayesian geostatistical model calibrated to results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017, to produce annual estimates with high-spatial resolution (5 ×    5 km) of diphtheria-pertussis-tetanus (DPT) vaccine coverage and dropout for children aged 12-23 months in 52 African countries from 2000 to 2016. FINDINGS: Estimated third-dose (DPT3) coverage increased in 72·3% (95% uncertainty interval [UI] 64·6-80·3) of second-level administrative units in Africa from 2000 to 2016, but substantial geographical inequalities in DPT coverage remained across and within African countries. In 2016, DPT3 coverage at the second administrative (ie, district) level varied by more than 25% in 29 of 52 countries, with only two (Morocco and Rwanda) of 52 countries meeting the Global Vaccine Action Plan target of 80% DPT3 coverage or higher in all second-level administrative units with high confidence (posterior probability ≥95%). Large areas of low DPT3 coverage (≤50%) were identified in the Sahel, Somalia, eastern Ethiopia, and in Angola. Low first-dose (DPT1) coverage (≤50%) and high relative dropout (≥30%) together drove low DPT3 coverage across the Sahel, Somalia, eastern Ethiopia, Guinea, and Angola. INTERPRETATION: Despite substantial progress in Africa, marked national and subnational inequalities in DPT coverage persist throughout the continent. These results can help identify areas of low coverage and vaccine delivery system vulnerabilities and can ultimately support more precise targeting of resources to improve vaccine coverage and health outcomes for African children. FUNDING: Bill & Melinda Gates Foundation

    Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis

    Get PDF
    Summary Background: Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean–Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease. Methods: In this multistage analysis, we quantified three stages underlying the potential of widespread viral haemorrhagic fever epidemics. Environmental suitability maps were used to define stage 1, index-case potential, which assesses populations at risk of infection due to spillover from zoonotic hosts or vectors, identifying where index cases could present. Stage 2, outbreak potential, iterates upon an existing framework, the Index for Risk Management, to measure potential for secondary spread in people within specific communities. For stage 3, epidemic potential, we combined local and international scale connectivity assessments with stage 2 to evaluate possible spread of local outbreaks nationally, regionally, and internationally. Findings: We found epidemic potential to vary within Africa, with regions where viral haemorrhagic fever outbreaks have previously occurred (eg, western Africa) and areas currently considered non-endemic (eg, Cameroon and Ethiopia) both ranking highly. Tracking transitions between stages showed how an index case can escalate into a widespread epidemic in the absence of intervention (eg, Nigeria and Guinea). Our analysis showed Chad, Somalia, and South Sudan to be highly susceptible to any outbreak at subnational levels. Interpretation Our analysis provides a unified assessment of potential epidemic trajectories, with the aim of allowing national and international agencies to pre-emptively evaluate needs and target resources. Within each country, our framework identifies at-risk subnational locations in which to improve surveillance, diagnostic capabilities, and health systems in parallel with the design of policies for optimal responses at each stage. In conjunction with pandemic preparedness activities, assessments such as ours can identify regions where needs and provisions do not align, and thus should be targeted for future strengthening and support. Funding Paul G Allen Family Foundation, Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society
    corecore