
LSHTM Research Online

Mosser, Jonathan F; Gagne-Maynard, William; Rao, Puja C; Osgood-Zimmerman, Aaron; Fullman,
Nancy; Graetz, Nicholas; Burstein, Roy; Updike, Rachel L; Liu, Patrick Y; Ray, Sarah E; +15 more...
Earl, Lucas; Deshpande, Aniruddha; Casey, Daniel C; Dwyer-Lindgren, Laura; Cromwell, Elizabeth
A; Pigott, David M; Shearer, Freya M; Larson, Heidi Jane; Weiss, Daniel J; Bhatt, Samir; Gething,
Peter W; Murray, Christopher JL; Lim, Stephen S; Reiner, Robert C; Hay, Simon I; (2019) Mapping
diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000-2016: a spatial and temporal modelling
study. Lancet, 393 (10183). pp. 1843-1855. ISSN 0140-6736 DOI: https://doi.org/10.1016/s0140-
6736(19)30226-0

Downloaded from: http://researchonline.lshtm.ac.uk/4652963/

DOI: https://doi.org/10.1016/s0140-6736(19)30226-0

Usage Guidlines:

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively
contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/

https://researchonline.lshtm.ac.uk

http://researchonline.lshtm.ac.uk/4652963/
https://doi.org/10.1016/s0140-6736(19)30226-0
http://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk
https://researchonline.lshtm.ac.uk


Articles

www.thelancet.com   Vol 393   May 4, 2019	 1843

Mapping diphtheria-pertussis-tetanus vaccine coverage in 
Africa, 2000–2016: a spatial and temporal modelling study
Jonathan F Mosser, William Gagne-Maynard, Puja C Rao, Aaron Osgood-Zimmerman, Nancy Fullman, Nicholas Graetz, Roy Burstein, Rachel L Updike, 
Patrick Y Liu, Sarah E Ray, Lucas Earl, Aniruddha Deshpande, Daniel C Casey, Laura Dwyer-Lindgren, Elizabeth A Cromwell, David M Pigott, 
Freya M Shearer, Heidi Jane Larson, Daniel J Weiss, Samir Bhatt, Peter W Gething, Christopher J L Murray, Stephen S Lim, Robert C Reiner Jr, Simon I Hay

Summary
Background Routine childhood vaccination is among the most cost-effective, successful public health interventions 
available. Amid substantial investments to expand vaccine delivery throughout Africa and strengthen administrative 
reporting systems, most countries still require robust measures of local routine vaccine coverage and changes in 
geographical inequalities over time.

Methods This analysis drew from 183 surveys done between 2000 and 2016, including data from 881 268 children in 
49 African countries. We used a Bayesian geostatistical model calibrated to results from the Global Burden of 
Diseases, Injuries, and Risk Factors Study 2017, to produce annual estimates with high-spatial resolution (5 ×    5 km) of 
diphtheria-pertussis-tetanus (DPT) vaccine coverage and dropout for children aged 12–23 months in 52 African 
countries from 2000 to 2016.

Findings Estimated third-dose (DPT3) coverage increased in 72·3% (95% uncertainty interval [UI] 64·6–80·3) of 
second-level administrative units in Africa from 2000 to 2016, but substantial geographical inequalities in DPT 
coverage remained across and within African countries. In 2016, DPT3 coverage at the second administrative (ie, 
district) level varied by more than 25% in 29 of 52 countries, with only two (Morocco and Rwanda) of 52 countries 
meeting the Global Vaccine Action Plan target of 80% DPT3 coverage or higher in all second-level administrative units 
with high confidence (posterior probability ≥95%). Large areas of low DPT3 coverage (≤50%) were identified in the 
Sahel, Somalia, eastern Ethiopia, and in Angola. Low first-dose (DPT1) coverage (≤50%) and high relative dropout 
(≥30%) together drove low DPT3 coverage across the Sahel, Somalia, eastern Ethiopia, Guinea, and Angola.

Interpretation Despite substantial progress in Africa, marked national and subnational inequalities in DPT coverage 
persist throughout the continent. These results can help identify areas of low coverage and vaccine delivery system 
vulnerabilities and can ultimately support more precise targeting of resources to improve vaccine coverage and health 
outcomes for African children.

Funding Bill & Melinda Gates Foundation.

Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
license.

Introduction
Routine childhood vaccination is among the most 
successful and cost-effective public health interventions,1,2 
substantially contributing to progress in child survival.3 
Despite these gains, vaccine-preventable diseases remain a 
major cause of child mortality and morbidity, particularly 
in lower-income settings.4 Driven largely by the intro
duction of new vaccines and the global polio eradication 
initiative, development assistance for vaccination reached 
US$3·6 billion in 2014.5 Nonetheless, gaps in coverage 
persist for both new and established vaccines.6 To maximise 
the effect of these investments, a locally focused under
standing of vaccine coverage patterns is crucial.

Because of its inclusion in the original Expanded 
Programme on Immunisation (EPI) and multidose 
schedule, diphtheria-pertussis-tetanus vaccine (DPT) 
coverage is a widely used measure of the performance 
of routine vaccine delivery systems. Dose-specific DPT 

coverage can be used to monitor initial engagement with 
the vaccine delivery system (first dose [DPT1] coverage), 
retention within the system (DPT1–3 dropout, or differ
ence between DPT1 and third dose [DPT3] coverage), and 
completion of the initial routine infant vaccine series 
(DPT3 coverage).7 Amid calls for improved targeting of 
interventions in the precision public health era,8 robust 
measurement of local vaccine coverage is crucial. Esti
mates of vaccine coverage are routinely produced at the 
national level,9 but do not capture the local patterns 
of coverage required to provide optimal, child-focused 
vaccine delivery services.10 The importance of geographical 
parity in vaccine coverage is emphasised in the Global 
Vaccine Action Plan (GVAP), which sets dual targets of 
90% national coverage and 80% coverage for all districts 
within countries by 2020, using DPT3 coverage as a 
marker.11 Efforts to track progress towards the GVAP 
district-level goals rely on subnational administrative data,6 
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but such data are not available for all countries and vary in 
quality.12 Local vaccine coverage estimates are also needed 
to precisely monitor progress towards the Sustainable 
Development Goals (SDGs), particularly those indicators 
focused on immunisation targets (ie, SDG indicator 3.b.1).13

The use of subnational data for action is a key component 
of the Reaching Every District strategy,14,15 which has been 
a key component of efforts to improve vaccine coverage 
across Africa since the early 2000s. Subnational vaccine 
coverages estimates have been produced at the first or 
second administrative levels from surveys or small-area-
estimation analyses,16 but are available only for some 

countries and years. In many settings, administrative 
coverage17—calculated by dividing the number of doses 
administered by the estimated number of eligible children 
in an administrative unit12—is the only continuous source 
of subnational information available to track progress and 
guide vaccine policy.14 However, despite ongoing efforts 
to strengthen administrative data quality,18–20 problems 
persist. In 2016, 46 countries in Africa reported subnational 
administrative DPT3 coverage to WHO and UNICEF. In 
these, 38 countries reported at least one subnational 
administrative unit with more than 100% coverage, and 
more than half (24 of 46) reported coverage higher than 

Research in context

Evidence before this study
National level estimates of routine vaccine coverage are 
produced annually through the Global Burden of Diseases, 
Injuries, and Risk Factors Study (GBD) and the WHO–UNICEF 
Estimates of National Immunisation Coverage process. 
Demographic and Health Surveys, the UNICEF Multiple 
Indicator Cluster Surveys, and other survey series produce 
subnational estimates of vaccine coverage. However, these 
series are limited to the select countries and years in which 
surveys are done and are generally produced at coarse 
administrative levels because of limitations of sample size. 
Countries also routinely calculate both national and 
subnational administrative coverage by dividing the total 
number of doses given by the number of surviving infants. 
Administrative coverage, however, is prone to numerator 
errors (incorrect recording of the number of doses 
administered), denominator errors (incomplete knowledge of 
target population size), and numerator–denominator 
mismatch (ie, due to migration or care seeking across borders). 
Subnational administrative data is used to track progress 
towards district-level Global Vaccine Action Plan (GVAP) 
targets but is not available for all countries and varies greatly in 
quality. No universally comparable set of coverage estimates 
exists to benchmark progress towards this target.

Because geographical inequalities in vaccine coverage are likely 
to exist even at subdistrict levels, modelling approaches that use 
geolocated data might better define local patterns of coverage. 
With use of the search string “(“Geographic Mapping”[Mesh] OR 
“subnational”[All Fields] OR “geospatial”[All Fields] OR 
“geostatistical”[All Fields]) AND (“vaccination”[All Fields] OR 
“vaccines”[MeSH Terms] OR “vaccines”[All Fields] OR 
“vaccine”[All Fields] OR “vaccine coverage”[All Fields] OR 
“immunisation”[All Fields] OR “vaccination”[MeSH Terms] OR 
“vaccination”[All Fields] OR “immunization”[All Fields] OR 
“immunization”[MeSH Terms])”, we searched PubMed 
from inception to April 30, 2018, for English-language studies 
producing high-resolution subnational estimates of vaccine 
coverage. Several studies have used Bayesian model-based 
geostatistical methods to estimate local patterns of vaccine 
coverage, but they were limited to select countries, years, or 
both and included only a subset of available survey data.

Added value of this study
To our knowledge, this analysis provides the first annual 
estimates of diphtheria-pertussis-tetanus (DPT) coverage at a 
continental scale, with a resolution of 5 × 5 km, and at first 
and second administrative levels in children aged 
12–23 months across 52 countries in Africa from 2000 to 
2016. We sought to synthesise and geolocate all available 
subnationally-resolved survey data, incorporating data from 
183 survey series encompassing 881 268 children in the final 
modelling process. With geostatistical methods, we produced 
estimates of vaccine coverage at the local and second 
administrative unit levels, whereas coverage estimation with 
traditional survey methods is often restricted to the first 
administrative level because of sample size limitations. 
To better define vaccine delivery system strengths and 
vulnerabilities, we produced local estimates of first-dose 
(DPT1) and third-dose (DPT3) coverage and DPT1–3 dropout. 
We used a uniform Bayesian model-based geostatistical 
modelling framework across all countries and calibrated 
results to national level estimates of vaccine coverage from 
GBD 2017 to enhance the comparability of estimates both 
within and between countries. These results allow tracking of 
progress towards subnational GVAP goals and provide a 
platform from which subnational administrative data can be 
triangulated with survey-based estimates.

Implications of all the available evidence
Together with existing subnational vaccine coverage 
estimates, these results show that national estimates alone are 
inadequate for monitoring trends in vaccine coverage. These 
subnational estimates can be triangulated with subnational 
administrative data, supporting efforts to strengthen 
administrative reporting systems. Despite widespread progress 
between 2000 and 2016, marked geographical inequalities in 
DPT coverage persist in Africa, both within and between 
countries. These enduring inequalities pose a substantial 
challenge to achieving GVAP targets and leave much of the 
continent at risk for preventable diseases and death. Our 
results allow local, national, and global decision makers to 
better understand local patterns of vaccine coverage and 
trends over time and to design more precise, high-impact 
interventions to increase vaccine coverage in Africa.
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100% for more than a quarter of administrative units.17 
These problems occur because subnational administrative 
coverage can be prone to numerator errors (incorrect 
number of doses delivered), denominator errors (inac
curate population estimates), and numerator–denom
inator mismatch (ie, due to mobility across subnational 
boundaries).12 Alternative subnational coverage estimates 
that incorporate non-administrative data sources—such 
as survey data—could be triangulated with administrative 
coverage to better understand vaccination patterns and 
further strengthen administrative data quality.

To date, no comparable subnational estimates of DPT 
coverage are available across countries and over time, 
which impedes the effective monitoring of key 
vaccination targets. Moreover, even subnational estimates 
conceal important local variation in vaccine coverage.21 
Studies22–25 published in the past few years have used 
Bayesian model-based geostatistical methods to map key 
health outcomes and determinants at high spatial 
resolution across Africa and over time. Other analyses26,27 
also have employed Bayesian geostatistical techniques to 
estimate vaccine coverage for selected antigens, 
countries, and years in Africa, but these analyses covered 
few countries, included only a subset of available survey 
data, or only estimated coverage for single years. To best 
inform vaccine policy and programme needs, local 
coverage estimates should be produced within a cohesive 
framework for all locations, support tracking changes 
in coverage over time, and capture patterns of both 
non-vaccination and under-vaccination. Our analysis 
aimed to provide the first comprehensive annual 
estimates of DPT1 and DPT3 coverage and DPT 
1–3 dropout among children aged 12–23 months at local 
(5 × 5 km) and subnational (second administrative unit) 
spatial resolutions for 52 countries across Africa from 
2000 to 2016.

Methods
Data collection
By use of the Global Health Data Exchange, a publicly-
accessible catalogue of population health data, we 
identified population-based household surveys in Africa 
between 2000 and 2016 that included dose-specific 
information on DPT coverage (from vaccine cards or 
maternal recall in the absence of vaccine cards) and 
subnational geographical location for children aged 
12–59 months (appendix). Vaccination status, age, and 
geographical location were extracted for 881 268 children 
in 183 surveys done in 49 countries across Africa. With 
use of individual-level survey data, we calculated dose-
specific DPT coverage (the proportion of children with 
zero, one, two, or three or more doses) for four age 
cohorts (12–23, 24–35, 36–47, and 48–59 months) at the 
most precise geographical level possible. Data from 
children aged 24 months or older were reassigned 
to the year in which those children would have 
been 12–23 months old.

Latitude and longitude values were available for 
42 384 survey clusters (so-called point data); for these, 
coverage was calculated at the cluster level and directly 
included in the geospatial model. For 45 112 survey 
clusters, no precise latitude and longitude was provided; 
for these data, dose-specific, and age-cohort-specific 
coverage was calculated for the most precise geo
graphical unit available, taking survey design and 
sampling weights into account (appendix). The average 
coverage estimates for each surveyed geographical unit 
were then converted to point data by use of a previously 
described resampling method before inclusion in the 
geospatial model.24,25,28 Lastly, we assembled a collection 
of 26 spatial covariates (appendix), prioritising co
variates previously linked to non-vaccination or under-
vaccination.29

Data analysis
This analysis combined survey data and a suite of spatial 
covariates in a two-step Bayesian model-based geo
statistical framework25 to generate annual estimates of 
DPT1 and DPT3 coverage and DPT1–3 dropout for every 
5 × 5 km area in Africa, from 2000 to 2016. This geo
statistical model capitalises on the relationships between 
vaccine coverage and associated covariates while incor
porating spatial and temporal correlations in the residuals 
to better predict coverage in places and years with scarce 
or no data available.

To model DPT3 coverage, we fitted separate models 
for five geographically contiguous regions in Africa, 
adapted from regions used in the Global Burden of 
Diseases, Injuries, and Risk Factors Study4 (GBD). This 
adaptation was necessary to exclude several countries in 
the GBD region of North Africa and Middle East that 
were outside of the geographical scope of this study 
(more details in the appendix). Each model was fit in 
two steps. In the first modelling step, stacked generali
sation,30 several submodels (boosted regression trees, 
lasso regression, and generalised additive models) were 
used to predict vaccine coverage with the spatial 
covariates as predictors. This ensemble modelling 
step allows non-linear relationships and interactions 
between covariates to better predict coverage but does 
not explicitly account for spatial or temporal coverage 
patterns. In the second modelling step, a Bayesian 
geostatistical model was used to account for residual 
spatial and temporal correlation, improving local DPT 
coverage estimates. Vaccine coverage was modelled 
as binomial count data with a logit link function, using 
the results of stacked generalisation as predictors 
and including a correlated spatiotemporal error term, 
country-level random effects, and a nugget effect that 
represented irreducible observation-level error. To 
generate uncertainty for each model, 1000 samples 
(or draws) were obtained from the joint posterior 
distribution, where each draw represents one set of 
possible coverage values for each 5 × 5 km location 

For the Global Health Data 
Exchange see http://ghdx.
healthdata.org/

See Online for appendix

http://ghdx.healthdata.org/
http://ghdx.healthdata.org/
http://ghdx.healthdata.org/
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across Africa and year in the study period. All models 
were fitted with integrated nested Laplace approximation 
in the R-INLA package in R, version 3.3.2.31–33

To ensure internal consistency—ie, that modelled dose-
specific coverage estimates all sum to 100% in every place 
and time—we used a continuation ratio ordinal regression 
approach.34 The two-step modelling process previously 
described for DPT3 was repeated with identical input data 
and covariates for two conditional coverage quantities:

and 

where d is the number of DPT doses received. Samples 
from the posterior of DPT3 coverage and these 
conditional coverage quantities were combined arith
metically to produce posterior distributions for DPT3 
coverage (the proportion of children who received three 
or more doses of DPT), DPT1 coverage (one or more 
doses), absolute DPT1–3 dropout (DPT3–DPT1), and 
relative DPT1–3 dropout ([DPT3–DPT1]/DPT1). Com
pared with other options for ordinal regression, such as 
the proportional odds model, the continuation ratio 
model allows the association between covariates and the 
odds of vaccination to vary by the number of doses 
received. Covariate–coverage associations varied between 
the conditional coverage geostatistical models (appendix), 
supporting the use of the continuation ratio model. 
Estimates of DPT3, DPT1, and DPT1–3 dropout produced 
by this model agreed closely with values calculated 
directly from survey data in an out-of-sample validation 
framework (appendix).

We calibrated geospatial estimates in logit space to 
DPT coverage at the national level estimated by GBD 
(appendix).35 This process preserves relative spatial 
patterns while ensuring that the population-weighted 
average of the calibrated geospatial estimates for a given 
country and year equals the corresponding GBD estimate. 
Calibrated draws for each indicator were summarised 
as mean estimates, uncertainty intervals (UIs), and 
probabilities of achieving coverage targets. Second-level 
administrative estimates were calculated as population-
weighted means by use of administrative boundaries 
from the Global Administrative Unit Layers (GAUL) data
base (GAUL boundary definitions were also used to define 
second-level administrative units in this analysis).36 We 
assessed absolute subnational inequalities by use of the 
range of second-level administrative unit mean estimates 
within a country. Relative subnational coverage variation 
was assessed by use of ratios of estimated second-level 
administrative coverage to the national average.

Both in-sample and out-of-sample model validation was 
done by use of spatiotemporal five-fold cross-validation, 
with spatial stratification at the second administrative 
level. Out-of-sample predictive metrics for DPT3 coverage 
indicated good model fit, including mean error (0·1%), 
mean absolute error (6·7%), root-mean-square error 

Figure 1: Distribution of diphtheria-pertussis-tetanus third-dose (DPT3) vaccine coverage at the second 
administrative level for 52 countries in Africa, 2016
Each box plot displays the distribution of estimated DPT3 coverage among second administrative units in 2016 for 
a single country. National mean DPT3 coverage estimates from GBD 2017 are shown as red asterisks. *No data 
were available for these countries.
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(0·097), and 95% coverage of predictive intervals (92·5%), 
with similar findings for other coverage indicators. By 
comparison with alternative models without spatio
temporal effects, with raw covariates or no spatial 
covariates, or both, the combination of ensemble 
modelling and spatiotemporal effects generally improved 
model performance (appendix). In three countries (South 
Africa, Libya, and Cape Verde), no surveys that included 

cluster-level information on both DPT vaccination 
coverage and subnational geographical information were 
identified. In South Africa, for instance, Demographic 
and Health Surveys were done in 2003 and 2016, but 
cluster-level subnational geographical information was 
not available at the time of this analysis. In these 
countries, the model produced coverage estimates by use 
of modelled relationships between DPT coverage and 

Figure 2: Estimated diphtheria-pertussis-tetanus third-dose (DPT3) vaccine coverage in Africa, 2000–16
(A–C) DPT3 coverage among children aged 12–23 months with a 5 × 5 km resolution in 2000, 2010, and 2016. (D) Model uncertainty in 2016; model uncertainty is 
displayed by use of the Coffey-Feingold-Bromberg metric (CFB), a measure of uncertainty that is comparable regardless of mean coverage and scales from 0% (no 
uncertainty) to 100% (highest possible uncertainty for a given mean). Results are masked in grey in areas where total population density was less than ten individuals 
per 1 × 1 km pixel in 2015 per WorldPop37 estimates, or where land cover was classified as “barren or sparsely vegetated” on the basis of MODIS38 satellite data in 2013. 
No data were available for Cape Verde, Libya, and South Africa.
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covariates (from other countries within the modelling 
region) and national-level coverage estimates from the 
GBD study.

Additional results and details on data preparation, 
modelling, estimation, validation, and comparison with 
existing estimates can be found in the appendix and the 
online visualisation tool.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding authors had 
full access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
DPT3 coverage
For most countries in Africa, national coverage estimates 
inadequately conveyed subnational variation in DPT3 
coverage (figure 1). In 2016, mean estimated DPT3 
coverage at the second administrative level varied by more 
than 25% in 29 of 52 countries, and eight of 52 countries 
contained at least one second-level administrative unit 
with estimated DPT3 coverage that was less than half the 
national average (figure 1). Notably, the countries with the 
largest subnational relative inequalities in coverage were 
also among those with the lowest national level coverage in 
Africa, including Nigeria (where 2016 DPT3 coverage for 
the second administrative level ranged from 7% to 203% of 

the national average), Chad (20–213%), Ethiopia (18–172%), 
and Angola (26%–160%). However, large relative 
inequalities in second administrative units also were noted 
in higher-coverage countries, including Kenya (44–114% of 
the national average) and Tanzania (50–107%). Several 
countries displayed large absolute gaps in DPT3 coverage 
at the second administrative level. The largest absolute 
subnational variation was found in Ethiopia, where DPT3 
coverage estimates at the second administrative level in 
2016 ranged from 93·1% (95% UI 89·1–95·9) in Addis 
Ababa to 9·7% (5·7–15·1) in Fantena Rasu. Similarly, we 
observed a large variation in Chad (from 87·8% [95% UI 
78·2–94·4] in Beboro to 8·1% [1·9–20·5] in Deredia) and 
Nigeria (from 76·2% [61·1–87·5] in Esan North-East to 
2·7% [1·0–5·5] in Wurno).

At the local level, patterns of DPT3 coverage varied 
markedly across Africa in 2000–16 (figure 2). In 2016, 
DPT3 coverage was lowest across the Sahel region (a 
region spanning parts of Senegal, Mauritania, Mali, 
Burkina Faso, Niger, Nigeria, Chad, and Sudan), Somalia, 
eastern Ethiopia, South Sudan, Guinea, Central African 
Republic, Equatorial Guinea, parts of DR Congo, and 
most of Angola (figure 2C). Of the ten second-level 
administrative units with the lowest estimated DPT3 
coverage in Africa in 2016, all were in Sokoto State in 
north-western Nigeria (figure 3A), and all had mean DPT3 
coverage estimates lower than 5%. By contrast, DPT3 
coverage estimates of second administrative divisions 
were highest in parts of Burkina Faso and Rwanda, with 

Figure 3: Estimated diphtheria-pertussis-tetanus third-dose (DPT3) vaccine coverage in Africa by administrative district and probabilities of achieving Global 
Vaccine Action Plan (GVAP) target coverage in 2016
(A) DPT3 coverage among children aged 12–23 months at the second administrative level. (B) Probability of second-level administrative unit achieving the GVAP 
target of 80% DPT3 coverage or higher in 2016. Results are masked in grey in areas where total population density was less than ten individuals per 1 × 1 km pixel in 
2015 per WorldPop37 estimates, or where land cover was classified as “barren or sparsely vegetated” on the basis of MODIS38 satellite data in 2013. No data were 
available for Cape Verde, Libya, and South Africa.
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large areas of northern Africa, the African Great Lakes 
region, Zambia, Mozambique, Namibia, and Eritrea 
reaching DPT3 coverage of 90% or higher (figure 3A).

Although continental and national geographical in
equalities in DPT3 coverage persisted in 2016, these esti
mates also revealed substantial gains in DPT3 coverage 
since 2000. DPT3 coverage increased throughout much 
of Africa between 2000 and 2016 (figure 2, figure 4), 
though unevenly. From 2000 to 2016, mean estimated 
DPT3 coverage increased in 72·3% (95% UI 64·6–80·3) 
and decreased in 27·7% (19·7–35·4) of second-level 
administrative units in Africa, showing an overall trend 
of progress across the continent (appendix). Coverage 
decreases were estimated with high certainty (posterior 
probability >95%) in second-level administrative units in 
Angola, Benin, Botswana, Egypt, Ethiopia, Guinea, Kenya, 
Malawi, Mali, São Tomé and Príncipe, and Tanzania. 
Despite the overall trend towards progress, some 
subnational areas started and ended the study period with 
low DPT3 coverage. Second-level administrative units in 
Chad, Equatorial Guinea, Ethiopia, Somalia, Angola, and 
throughout most of northern Nigeria had estimated DPT3 
coverage lower than 25% in both 2000 and 2016. Additional 
areas of Guinea, Benin, Mali, Central African Republic, 
Niger, Congo, DR Congo, Sudan, and South Sudan both 
started and ended the study period with estimated DPT3 
coverage below 50% (figure 4C).

Subnational trends in DPT3 coverage have been 
particularly uneven in several countries with a large 
population and low DPT3 coverage (figure 4). In Nigeria, 
for instance, coverage gains were largely isolated to 
the south, whereas stagnating or decreasing DPT3 

coverage was found throughout most of the northeast and 
northwest. In 2000, many areas of western Ethiopia had 
some of the lowest DPT3 coverage estimates in Africa, 
but recorded some of the continent’s largest increases in 
coverage by 2016 (eg, in Asosa, coverage rose from 20·7% 
[95% UI 14·0–29·0] in 2000 to 84·7% [79·4–89·3] in 2016). 
At the same time, much of eastern Ethiopia achieved 
minimal gains. In Kilbet Rasu, for example, DPT3 coverage 
was low in 2000 (23·2% [95% UI 14·9–33·7]) and remained 
low in 2016 (12·9% [8·7–18·9]).

DPT1 coverage
As with DPT3 coverage, DPT1 coverage increased 
throughout most of Africa from 2000 to 2016 (appendix), 
with estimated DPT1 coverage increasing in 69·5% 
(95% UI 61·0–76·8) of second-level administrative units 
and decreasing in 30·5% (23·2–39·0). Estimated 
changes in DPT1 coverage at the second administrative 
level ranged from a 67·9 percentage point increase to a 
53·3 percentage point decrease, with the largest 
estimated gains found in parts of Sierra Leone, southern 
Chad, and western Ethiopia (appendix).

In 2016, estimated DPT1 coverage exceeded 90% in 
much of Namibia, Zambia, Eritrea, Mozambique, and 
Lesotho and across northern Africa, along with large 
parts of the African Great Lakes region and western 
Africa (figure 5). However, in some areas—notably much 
of Angola, northern Nigeria, Chad, Somalia, Equatorial 
Guinea, Congo, eastern Ethiopia, as well as parts of 
South Sudan, Guinea, and DR Congo—estimated DPT1 
coverage was lower than 50% in both 2000 and 2016 
(figure 5, appendix).

Figure 4: Estimated changes in diphtheria-pertussis-tetanus third-dose (DPT3) vaccine coverage in Africa, 2000–16
Mean estimated changes in DPT3 coverage among children aged 12–23 months between 2000 and 2016 with a 5 × 5 km resolution (A) and at the second administrative level (B). Colours represent 
estimated absolute change (%), with positive changes (increased coverage) represented in blue and negative changes (decreased coverage) in red. Increases and decreases of 50% or higher are 
represented by dark blue (increases) and dark red (decreases). (C) Areas of low DPT3 coverage over time; second administrative units with coverage lower than 25% in both 2000 and 2016 are 
represented in red, whereas units with coverage ranging from 25% to lower than 50% in both 2000 and 2016 are represented in orange. Results are masked in grey in areas where total population 
density was less than ten individuals per 1 × 1 km pixel in 2015 per WorldPop37 estimates, or where land cover was classified as “barren or sparsely vegetated” on the basis of MODIS38 satellite data in 
2013. No data were available for Cape Verde, Libya, and South Africa.
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Subnational disparities in initial vaccine delivery 
system engagement by the population, as measured 
by DPT1 coverage, can impede geographical parity 
in DPT3 coverage. In 2016, the largest absolute 
subnational disparity in DPT1 coverage at the second 
administrative level occurred in Nigeria, ranging from 
5·0% (95% UI 3·0–8·4) in Wurno, Sokoto, to 90·8% 
(86·4–94·5) in Surulere, Lagos. Nigeria, Chad, 

Ethiopia, Mali, Angola, Kenya, and DR Congo all had 
mean DPT1 coverage disparities at the second 
administrative level of 50% or greater in 2016. Notably, 
DPT1 coverage was highly likely (posterior probability 
>95%) to be lower than 80% in 2016 across a continuous 
band stretching from northern Benin and northern 
Nigeria to Ethiopia and Somalia; in most of Angola; in 
Equatorial Guinea and contiguous areas of Central 

Figure 5: Estimated diphtheria-pertussis-tetanus first-dose (DPT1) vaccine coverage in Africa, 2000–16
(A–C) DPT1 coverage among children aged 12–23 months at the 5 × 5 km resolution in 2000, 2010, and 2016. (D) Model uncertainty in 2016; model uncertainty is 
displayed by use of the Coffey-Feingold-Bromberg metric (CFB), a measure of uncertainty that is comparable regardless of mean coverage and scales from 0% (no 
uncertainty) to 100% (highest possible uncertainty for a given mean). Results are masked in grey in areas where total population density was less than ten individuals 
per 1 × 1 km pixel in 2015 per WorldPop37 estimates, or where land cover was classified as “barren or sparsely vegetated” on the basis of MODIS38 satellite data in 2013. 
No data were available for Cape Verde, Libya, and South Africa.
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African Republic, Congo, and DR Congo; and in parts 
of Guinea and Mali (appendix).

DPT1–3 dropout
Areas with high DPT1–3 dropout were mostly similar 
to patterns of low DPT1 and DPT3 coverage. For in
stance, across parts of Nigeria, Angola, Chad, Mali, 
Guinea, Liberia, Equatorial Guinea, Central African 

Republic, South Africa, Somalia, and Ethiopia, esti
mated relative dropout exceeded 25% (figure 6). 
By contrast, northern Africa, Namibia, eastern Africa 
(including Rwanda, Burundi, parts of Kenya, Tanzania, 
Mozambique, Zimbabwe, and Zambia), and western 
Africa (namely Burkina Faso, Ghana, Togo, and 
western Senegal) had estimated relative dropout of 
10% or lower in 2016 (figure 6A, 6B). In these places, 

Figure 6: Estimated relative diphtheria-pertussis-tetanus (DPT) vaccine dropout (first dose minus third dose; DPT1–3) in Africa, 2016
DPT1–3 relative dropout with a 5 × 5 km resolution (A) and at the second administrative unit level (B). (C, D) Bivariate maps of DPT1 coverage and DPT1–3 relative 
dropout; each grid square represents a range of DPT1 coverage (vertical axis, white to red) and DPT1–3 dropout (horizontal axis, white to blue) for each modelled 
5 × 5 km area (C) and second-level administrative unit (D) in Africa. Results are masked in grey in areas where total population density was less than ten individuals 
per 1 × 1 km pixel in 2015 per WorldPop37 estimates, or where land cover was classified as “barren or sparsely vegetated” on the basis of MODIS38 satellite data in 2013. 
No data were available for Cape Verde, Libya, and South Africa.
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more than 90% of children who received a first dose of 
DPT went on to finish the three-dose series.

From 2000 to 2016, DPT1–3 dropout decreased through
out much of Africa (appendix). 71·6% (95% UI 65·0–79·7) 
of second-level administrative units had estimated 
declines in relative dropout, suggesting broad improve
ments in vaccine system retention across the continent. 
At the same time, relative dropout rose in some areas. 
The largest increases in relative dropout were estimated 
in the Gao Region of northeastern Mali and the Uíge 
province in northern Angola. Angola also had the widest 
disparities in relative DPT1–3 dropout across second-level 
administrative units in 2016, ranging from 8·8% (95% UI 
3·6–17·4) in Porto Amboim to 61·9% (37·4–82·5) in 
Cacolo (appendix).

Low DPT3 coverage could result from poor initial 
engagement with the routine infant immunisation 
system (low DPT1 coverage), poor retention within the 
system (high DPT1–3 dropout), or both. To illustrate 
these relationships, figures 6C, 6D show both DPT1 
coverage and relative DPT1–3 dropout in a single plot. 
In some areas, such as northern Cameroon or parts 
of South Africa and Botswana, initial engagement 
with the vaccine system was strong (estimated DPT1 
coverage >80%), but relative dropout lower than 
20% resulted in substantially diminished DPT3 coverage. 
In other areas, such as parts of Congo, DPT1 coverage 
was 60% or less, but more than 90% of children who 
received a first dose of DPT completed the three-dose 
series. In some parts of northern Nigeria, Somalia, 
eastern Ethiopia, Chad, Equatorial Guinea, Guinea, and 
Angola, low DPT3 coverage resulted from both low DPT1 
coverage (50% or lower DPT1 coverage) and high dropout 
(30% or higher DPT1–3 dropout), resulting in some of 
the lowest DPT3 coverage estimates in Africa.

Progress toward GVAP targets
Of the 52 countries in this analysis, two (Morocco and 
Rwanda) were estimated to have already met the GVAP 
threshold of 80% DPT3 coverage or higher in all second-
level administrative units in 2016 with high certainty 
(posterior probability >95%), an increase from no countries 
in 2000. For some countries, DPT3 coverage was uniformly 
low. For instance, several countries were very likely not to 
have any second-level administrative units with 80% DPT3 
coverage or higher in 2016, such as Equatorial Guinea 
(posterior probability=98·2%) and Angola (95·2%). In 
Angola, no second-level administrative units had more 
than 2% posterior probability of achieving 80% DPT3 
coverage in 2016 (figure 3B). Additionally, in Nigeria, only 
0·7% (95% UI 0·0–1·8) of second-level administrative 
units were estimated to have met the 80% GVAP threshold 
by 2016.

In other countries, the probability of meeting the 
GVAP threshold varied substantially by second admin
istrative level (figure 3B). In DR Congo, for instance, 
42·0% (95% UI 34·0–52·0) of second-level administrative 

units were estimated to have achieved 80% DPT3 
coverage or higher in 2016. However, in Ethiopia, only 
Addis Ababa and Asosa were highly certain to have 
achieved 80% DPT3 coverage or higher in 2016, whereas 
most (86·7%) second-level administrative units were 
highly unlikely to have met this threshold.

Discussion
To our knowledge, this analysis represents the first 
continent-wide, high-resolution estimation of DPT 
coverage over space and time in 52 countries in Africa, a 
crucial input for strengthening local vaccine programmes 
and investments. In much of Africa, both DPT1 and DPT3 
coverage improved and DPT1–3 dropout decreased during 
2000–16. Notably, 2000–16 is a period of heightened 
financial and political commitment to scaling up vaccine 
delivery and the creation of Gavi, the Vaccine Alliance.5 
However, progress was far from universal, leaving wide 
areas in Africa with low DPT1 and DPT3 coverage, high 
dropout between first and third doses of DPT, and vast 
subnational inequalities in coverage and dropout in many 
countries. The subnational inequalities observed in this 
study show that national estimates alone are inadequate to 
monitor vaccine coverage. National estimates can mask 
subnational pockets of low coverage across Africa, leaving 
children in those areas at risk for preventable diseases and 
death. These results offer a tool for decision makers to 
better understand local patterns of vaccine coverage and to 
identify where strengthening vaccine delivery systems 
might have the greatest effect.

By estimating local patterns of DPT1 and DPT3 coverage 
and DPT1–3 dropout, these results provide a window into 
subnational vaccine delivery system performance. For 
instance, Angola is in the process of transitioning out of 
Gavi support, but continues to receive Gavi support 
through a country-specific post-transition plan.39 These 
estimates reveal uneven progress over time, persistently 
low DPT1 and DPT3 coverage, and high DPT1–3 dropout 
across much of the country. Angola’s transition period has 
been marked by vaccine stockouts and supply shortages in 
part because of large birth cohorts in the country and 
vaccine cofinancing challenges,40 and these estimates 
highlight the risk that Angola might exit Gavi support with 
large areas of persistently low DPT coverage. In Nigeria, 
which was facing imminent transition out of Gavi support 
until an exceptional extension to provide support through 
2028 was granted,41 these estimates identified persistent 
striking subnational coverage inequalities. The successful 
transition from Gavi support in Nigeria will require 
reliable subnational coverage estimates, to both prioritise 
resources at the federal level and design targeted state-level 
strategies to improve coverage.42 By contrast, the large 
coverage gains estimated in western Ethiopia might hold 
important lessons for other areas with persistently low 
DPT coverage, and the contribution of specific strategies 
(such as Ethiopia’s Health Extension Programme)43 to this 
progress is worthy of further investigation. Nonetheless, 
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sizeable gaps persist between urban areas, such as Addis 
Ababa, and the rest of the country, and gains have been 
much harder to achieve in pastoralist areas in the northeast 
or the eastern region than in more urbanised areas. By 
tracking progress and geographical distribution over time, 
local vaccine coverage estimates could help to identify 
locations for further study, to assess whether successful 
efforts to strengthen health systems or enhance vaccine 
confidence in some locations could be more broadly 
applied.

Many countries in sub-Saharan Africa face substantial 
challenges in achieving the GVAP national level target 
of 90% coverage,44 and these challenges extend also to 
geographical parity targets. Although many countries 
have made substantial progress towards the GVAP target 
of 80% DPT3 coverage or higher in all of their second-
level administrative units, only two of 52 countries were 
likely to have met this target by 2016. Attempts to monitor 
progress towards the district-level GVAP target rely on 
subnational administrative data,6 but this approach is 
considerably limited by data availability and reliability, 
which vary from country to country. By producing 
comparable estimates of coverage in a probabilistic 
framework, this analysis provides a new tool to monitor 
subnational progress towards the GVAP goals.

In some countries, the probability of meeting the 
GVAP threshold varied substantially by second 
administrative level (figure 3B). Focused improvements 
in lower-performing areas within these countries will be 
required to ensure that subnational GVAP targets are 
reached by 2020. Understanding patterns of low DPT1 
coverage and DPT1–3 dropout at a subnational scale 
might help countries reach these targets. Our analysis 
showed that, in 2016, estimated DPT1 coverage exceeded 
90% in numerous regions of the continent (figure 5), 
suggesting that initial infant engagement with the 
routine EPI schedule is robust in such regions. By 
contrast, in some regions, estimated DPT1 coverage was 
lower than 50% in both 2000 and 2016 (figure 5, 
appendix), suggesting that, in these regions, more than 
half of all children aged 12–23 months have never 
received a dose of DPT. Additionally, DPT1 coverage was 
highly likely to be lower than 80% in 2016 in large areas 
of the continent. In such areas, our results suggest that 
initial engagement with the routine infant schedule is a 
substantial barrier to attaining subnational GVAP goals 
for DPT3 coverage. Therefore, areas with low DPT1 
coverage and low DPT1–3 dropout might benefit most 
from interventions targeting initial engagement. Where 
these results estimate high DPT1 coverage and low 
DPT1–3 dropout, enhancing retention within the vaccine 
delivery system would be important. Where estimated 
DPT1–3 dropout is high and DPT1 coverage is low, both 
approaches might be necessary to achieve DPT3 coverage 
targets (figure 6). By identifying areas of particularly low 
DPT1–3 dropout and trends over time, these results 
could improve the evidence base from which both 

national and local vaccine stakeholders can assess 
progress and allocate resources, a key pillar of the 
Reaching Every District approach.14,15

Our study shows that Bayesian model-based geo
statistical estimates can be a useful tool to analyse 
subnational vaccine coverage patterns. Changing admin
istrative boundaries over time can make interpretation 
of trends in vaccine coverage from administrative 
data, surveys, and small area estimates challenging. By 
incorporating data at the finest geographical scale 
possible, estimating coverage at the 5 × 5 km level, 
and then calculating administrative-level coverage, this 
method is robust to such boundary changes, allowing for 
the analysis of changes in coverage over time. Compared 
with previous efforts to estimate local patterns of vaccine 
coverage,26,27 this study draws from a much larger data
base of household surveys and maximises predictive 
accuracy through its Bayesian model-based geostatistical 
framework. These previous efforts mostly focused on 
estimating location-specific vaccine coverage but did 
not account for trends over time; by contrast, our study 
provides both geographical and temporal dimensions 
within a cohesive estimation approach. This study 
represents a novel application of a continuation-ratio 
ordinal regression framework to Bayesian geostatistical 
models, allowing the estimation of internally consistent 
and dose-specific coverage levels and dropout. Finally, 
this study was the first to estimate local patterns of 
vaccine coverage over time at a continental scale. By 
applying a uniform modelling framework across all esti
mated countries and calibrating to national level GBD 
estimates, this study enhanced the comparability of 
estimates within and between countries.

Both the data used in the analysis and these methods 
are subject to several limitations. First, data were survey-
derived and included information obtained from vaccine 
cards and maternal recall. This approach improves data 
availability among populations where vaccine cards are 
not available but might introduce recall bias and might 
not explicitly account for doses administered during 
campaigns. Second, data were included at administrative 
levels if precise coordinates were not available, which 
might have resulted in a flattening of spatial variation in 
local estimates. However, excluding these data risked 
obscuring or skewing important trends in coverage 
where geolocated data were not available. Improved 
collection and availability of georeferenced location data 
will improve estimates of local disparities in vaccine 
coverage. Third, following the GBD approach, we used 
data from children aged 12–59 months alive at the time 
of survey to retrospectively estimate past coverage among 
children aged 12–23 months, to better capture historical 
trends and use coverage observations from geographical 
locations where only children aged 24 months or older 
were sampled. This method assumes negligible catch-up 
vaccination, does not incorporate uncertainty due to poor 
card retention rates in older age cohorts, and cannot 
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account for potential effects of migration or differential 
mortality by vaccine status. Fourth, our ensemble 
modelling approach improved the ability of the model to 
predict vaccine coverage by allowing for complex and 
non-linear interactions between covariates and coverage. 
However, this predictive model was not designed to infer 
which covariates drive vaccine coverage. Further methods 
development is needed to design models that allow both 
high predictive accuracy and inferential analysis. Fifth, 
data were not available for all countries or years, and 
no data were available for Cape Verde, Libya, or South 
Africa. In some areas, such as conflict zones or outbreak 
settings (eg, in northeastern Nigeria), data availability 
might have been further reduced because of safety and 
security concerns. If the associations between covariates 
and vaccine coverage in such areas are fundamentally 
different than in areas where data are available, these 
estimates might be biased. Sixth, we defined second-
level administrative units by use of boundary definitions 
from the GAUL database, but changes in subnational 
administrative boundaries are not always captured 
in publicly available boundary definitions. Updated, 
accurate, and publicly available boundary definitions are 
needed to best assess progress towards subnational 
GVAP targets. Finally, local coverage estimates can help 
to guide policy decisions but should be considered in a 
broader local health context. This model does not account 
for vaccine cost-effectiveness, local disease burden, 
competing priorities, or other supply-and-demand side 
factors that policy makers should consider when 
allocating resources.

The global community has made a worthwhile, sub
stantial, and ongoing investment to support and expand 
vaccination services in Africa and around the world. 
However, despite substantial gains in DPT coverage in 
Africa between 2000 and 2016, geographical inequalities 
persist—both within countries and across national 
borders. To ensure continued progress and improved 
equality, local, national, and global vaccine delivery 
programmes require coverage estimates that measure 
and track coverage at policy-relevant scales. These con
tinent-wide local-resolution estimates provide a novel 
precision public health tool to assess local patterns of 
DPT coverage in Africa, monitor progress towards 
district-level GVAP targets, and triangulate survey-based 
estimates with subnational administrative data. Local 
estimates of vaccine coverage can ultimately support 
more precise targeting of resources to ensure that all 
children have access to the essential health benefits of 
vaccination.
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