242 research outputs found

    Monte-Carlo simulations of star-branched polyelectrolyte micelles

    Full text link
    The concentration profiles of monomers and counterions in star-branched polyelectrolyte micelles are calculated through Monte-Carlo simulations, using the simplest freely-jointed chain model. We have investigated the onset of different regimes corresponding to the spherical and Manning condensation of counterions as a function of the strength of the Coulomb coupling. The Monte-Carlo results are in fair agreement with the predictions of Self-Consistent-Field analytical models. We have simulated a real system of diblock copolymer micelles of (sodium-polystyrene-sulfonate)(NaPSS)-- (polyethylene-- propylene)(PEP) with f=54 hydrophilic branches of N=251 monomers at room temperature in salt-free solution and compared the calculated form factor with our neutron-scattering data.Comment: 14 pages, 20 figure

    The Orbit, Mass, and Albedo of Transneptunian Binary 1999 RZ253

    Full text link
    We have observed 1999 RZ253 with the Hubble Space Telescope at seven separate epochs and have fit an orbit to the observed relative positions of this binary. Two orbital solutions have been identified that differ primarily in the inclination of the orbit plane. The best fit corresponds to an orbital period, P=46.263 +0.006/-0.074 days, semimajor axis a=4,660 +/-170 km and orbital eccentricity e=0.460 +/-0.013 corresponding to a system mass m=3.7 +/-0.4 x10^18 kg. For a density of rho = 1000 kg m^-3 the albedo at 477 nm is p = 0.12 +/-0.01, significantly higher than has been commonly assumed for objects in the Kuiper Belt. Multicolor, multiepoch photometry shows this pair to have colors typical for the Kuiper belt with a spectral gradient of 0.35 per 100 nm in the range between 475 and 775 nm. Photometric variations at the four epochs we observed were as large as 12 +/-3% but the sampling is insufficient to confirm the existence of a lightcurve

    "TNOs are Cool": A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations

    Get PDF
    The classical Kuiper belt contains objects both from a low-inclination, presumably primordial, distribution and from a high-inclination dynamically excited population. Based on a sample of classical TNOs with observations at thermal wavelengths we determine radiometric sizes, geometric albedos and thermal beaming factors as well as study sample properties of dynamically hot and cold classicals. Observations near the thermal peak of TNOs using infra-red space telescopes are combined with optical magnitudes using the radiometric technique with near-Earth asteroid thermal model (NEATM). We have determined three-band flux densities from Herschel/PACS observations at 70.0, 100.0 and 160.0 μ\mum and Spitzer/MIPS at 23.68 and 71.42 μ\mum when available. We have analysed 18 classical TNOs with previously unpublished data and re-analysed previously published targets with updated data reduction to determine their sizes and geometric albedos as well as beaming factors when data quality allows. We have combined these samples with classical TNOs with radiometric results in the literature for the analysis of sample properties of a total of 44 objects. We find a median geometric albedo for cold classical TNOs of 0.14 and for dynamically hot classical TNOs, excluding the Haumea family and dwarf planets, 0.085. We have determined the bulk densities of Borasisi-Pabu (2.1 g/cm^3), Varda-Ilmare (1.25 g/cm^3) and 2001 QC298 (1.14 g/cm^3) as well as updated previous density estimates of four targets. We have determined the slope parameter of the debiased cumulative size distribution of dynamically hot classical TNOs as q=2.3 +- 0.1 in the diameter range 100<D<500 km. For dynamically cold classical TNOs we determine q=5.1 +- 1.1 in the diameter range 160<D<280 km as the cold classical TNOs have a smaller maximum size.Comment: 22 pages, 7 figures Accepted to be published in Astronomy and Astrophysic

    Neptune Trojans and Plutinos: colors, sizes, dynamics, and their possible collisions

    Get PDF
    Neptune Trojans and Plutinos are two subpopulations of trans-Neptunian objects located in the 1:1 and the 3:2 mean motion resonances with Neptune, respectively, and therefore protected from close encounters with the planet. However, the orbits of these two kinds of objects may cross very often, allowing a higher collisional rate between them than with other kinds of trans-Neptunian objects, and a consequent size distribution modification of the two subpopulations. Observational colors and absolute magnitudes of Neptune Trojans and Plutinos show that i) there are no intrinsically bright (large) Plutinos at small inclinations, ii) there is an apparent excess of blue and intrinsically faint (small) Plutinos, and iii) Neptune Trojans possess the same blue colors as Plutinos within the same (estimated) size range do. For the present subpopulations we analyzed the most favorable conditions for close encounters/collisions and address any link there could be between those encounters and the sizes and/or colors of Plutinos and Neptune Trojans. We also performed a simultaneous numerical simulation of the outer Solar System over 1 Gyr for all these bodies in order to estimate their collisional rate. We conclude that orbital overlap between Neptune Trojans and Plutinos is favored for Plutinos with large libration amplitudes, high eccentricities, and small inclinations. Additionally, with the assumption that the collisions can be disruptive creating smaller objects not necessarily with similar colors, the present high concentration of small Plutinos with small inclinations can thus be a consequence of a collisional interaction with Neptune Trojans and such hypothesis should be further analyzed.Comment: 15 pages, 9 figures, 6 tables, accepted for publication in A&

    "TNOs are Cool": A survey of the trans-Neptunian region VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects

    Full text link
    Trans-Neptunian objects (TNO) represent the leftovers of the formation of the Solar System. Their physical properties provide constraints to the models of formation and evolution of the various dynamical classes of objects in the outer Solar System. Based on a sample of 19 classical TNOs we determine radiometric sizes, geometric albedos and beaming parameters. Our sample is composed of both dynamically hot and cold classicals. We study the correlations of diameter and albedo of these two subsamples with each other and with orbital parameters, spectral slopes and colors. We have done three-band photometric observations with Herschel/PACS and we use a consistent method for data reduction and aperture photometry of this sample to obtain monochromatic flux densities at 70.0, 100.0 and 160.0 \mu m. Additionally, we use Spitzer/MIPS flux densities at 23.68 and 71.42 \mu m when available, and we present new Spitzer flux densities of eight targets. We derive diameters and albedos with the near-Earth asteroid thermal model (NEATM). As auxiliary data we use reexamined absolute visual magnitudes from the literature and data bases, part of which have been obtained by ground based programs in support of our Herschel key program. We have determined for the first time radiometric sizes and albedos of eight classical TNOs, and refined previous size and albedo estimates or limits of 11 other classicals. The new size estimates of 2002 MS4 and 120347 Salacia indicate that they are among the 10 largest TNOs known. Our new results confirm the recent findings that there are very diverse albedos among the classical TNOs and that cold classicals possess a high average albedo (0.17 +/- 0.04). Diameters of classical TNOs strongly correlate with orbital inclination in our sample. We also determine the bulk densities of six binary TNOs.Comment: 21 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    Reopening the TNOs Color Controversy: Centaurs Bimodality and TNOs Unimodality

    Full text link
    We revisit the Trans-Neptunian Objects (TNOs) color controversy allegedly solved by Tegler and Romanishin 2003. We debate the statistical approach of the quoted work and discuss why it can not draw the claimed conclusions, and reanalyze their data sample with a more adequate statistical test. We find evidence for the existence of two color groups among the Centaurs. Therefore, mixing both centaurs and TNOs populations lead to the erroneous conclusion of a global bimodality, while there is no evidence for two color groups in the TNOs population alone. We use quasi-simultaneous visible color measurements published for 20 centaurs (corresponding to about half of the identified objects of this class), and conclude on the existence of two groups. With the surface evolution model of Delsanti et al. (2003) we discuss how the existence of two groups of Centaurs may be compatible with a continuous TNOs color distribution.Comment: 4 pages, 4 figures, accepted for publication in Astronomy and Astrophysics Letter

    Tohoku-Hiroshima-Nagoya planetary spectra library: A method for characterizing planets in the visible to near infrared

    Full text link
    There has not been a comprehensive framework for comparing spectral data from different planets.Such a framework is needed for the study of extrasolar planets and objects within the solar system. We have undertaken observations to compile a library of planet spectra for all planets, some moons, and some dwarf planets in the solar system to study their general spectroscopic and photometric natures. During May and November of 2008, we acquired spectra for the planets using TRISPEC, which is capable of simultaneous three-band spectroscopy in a wide wavelength range of 0.45 - 2.5 microns with low resolving power (lambda-over-Delta-lambda is 140 - 360). Patterns emerge from comparing the spectra. Analyzing their general spectroscopic and photometric natures, we show that it is possible to distinguish between gas planets, soil planets and ice planets. These methods can be applied to extrasolar observations using low resolution spectrography or broad-band filters. The present planet spectral library is the first library to contain observational spectra for all of the solar system planets, based on simultaneous observations in visible and near infrared wavelengths. This library will be a useful reference for analyzing extrasolar planet spectra, and for calibrating planetary data sets.Comment: 11 pages, 6 figures, Accepted on 28/08/2009 to appear in Section 10. Planets and planetary systems of Astronomy and Astrophysic

    Dynamics of Collapse of flexible Polyelectrolytes and Polyampholytes

    Full text link
    We provide a theory for the dynamics of collapse of strongly charged polyelectrolytes (PEs) and flexible polyampholytes (PAs) using Langevin equation. After the initial stage, in which counterions condense onto PE, the mechanism of approach to the globular state is similar for PE and PA. In both instances, metastable pearl-necklace structures form in characteristic time scale that is proportional to N^{4/5} where N is the number of monomers. The late stage of collapse occurs by merger of clusters with the largest one growing at the expense of smaller ones (Lifshitz- Slyozov mechanism). The time scale for this process T_{COLL} N. Simulations are used to support the proposed collapse mechanism for PA and PE.Comment: 14 pages, 2 figure

    TNOs are Cool: A survey of the trans-Neptunian region V. Physical characterization of 18 Plutinos using Herschel PACS observations

    Full text link
    We present Herschel PACS photometry of 18 Plutinos and determine sizes and albedos for these objects using thermal modeling. We analyze our results for correlations, draw conclusions on the Plutino size distribution, and compare to earlier results. Flux densities are derived from PACS mini scan-maps using specialized data reduction and photometry methods. In order to improve the quality of our results, we combine our PACS data with existing Spitzer MIPS data where possible, and refine existing absolute magnitudes for the targets. The physical characterization of our sample is done using a thermal model. Uncertainties of the physical parameters are derived using customized Monte Carlo methods. The correlation analysis is performed using a bootstrap Spearman rank analysis. We find the sizes of our Plutinos to range from 150 to 730 km and geometric albedos to vary between 0.04 and 0.28. The average albedo of the sample is 0.08 \pm 0.03, which is comparable to the mean albedo of Centaurs, Jupiter Family comets and other Trans-Neptunian Objects. We were able to calibrate the Plutino size scale for the first time and find the cumulative Plutino size distribution to be best fit using a cumulative power law with q = 2 at sizes ranging from 120-400 km and q = 3 at larger sizes. We revise the bulk density of 1999 TC36 and find a density of 0.64 (+0.15/-0.11) g cm-3. On the basis of a modified Spearman rank analysis technique our Plutino sample appears to be biased with respect to object size but unbiased with respect to albedo. Furthermore, we find biases based on geometrical aspects and color in our sample. There is qualitative evidence that icy Plutinos have higher albedos than the average of the sample.Comment: 18 pages, 8 figures, 8 tables, accepted for publication in A&

    Visible spectroscopy of the new ESO Large Program on trans-Neptunian objects and Centaurs: final results

    Full text link
    A second large programme (LP) for the physical studies of TNOs and Centaurs, started at ESO Cerro Paranal on October 2006 to obtain high-quality data, has recently been concluded. In this paper we present the spectra of these pristine bodies obtained in the visible range during the last two semesters of the LP. We investigate the spectral behaviour of the TNOs and Centaurs observed, and we analyse the spectral slopes distribution of the full data set coming from this LP and from the literature. We computed the spectral slope for each observed object, and searched for possible weak absorption features. A statistical analysis was performed on a total sample of 73 TNOs and Centaurs to look for possible correlations between dynamical classes, orbital parameters, and spectral gradient. We obtained new spectra for 28 bodies, 15 of which were observed for the first time. All the new presented spectra are featureless, including 2003 AZ84, for which a faint and broad absorption band possibly attributed to hydrated silicates on its surface has been reported. The data confirm a wide variety of spectral behaviours, with neutral--grey to very red gradients. An analysis of the spectral slopes available from this LP and in the literature for a total sample of 73 Centaurs and TNOs shows that there is a lack of very red objects in the classical population. We present the results of the statistical analysis of the spectral slope distribution versus orbital parameters. In particular, we confirm a strong anticorrelation between spectral slope and orbital inclination for the classical population. A strong correlation is also found between the spectral slope and orbital eccentricity for resonant TNOs, with objects having higher spectral slope values with increasing eccentricity.Comment: 11 pages, 9 figure
    corecore