89 research outputs found

    Triad representation of the Chern-Simons state in quantum gravity

    Get PDF
    We investigate a triad representation of the Chern-Simons state of quantum gravity with a non-vanishing cosmological constant. It is shown that the Chern-Simons state, which is a well-known exact wavefunctional within the Ashtekar theory, can be transformed to the real triad representation by means of a suitably generalized Fourier transformation, yielding a complex integral representation for the corresponding state in the triad variables. It is found that topologically inequivalent choices for the complex integration contour give rise to linearly independent wavefunctionals in the triad representation, which all arise from the one Chern-Simons state in the Ashtekar variables. For a suitable choice of the normalization factor, these states turn out to be gauge-invariant under arbitrary, even topologically non-trivial gauge-transformations. Explicit analytical expressions for the wavefunctionals in the triad representation can be obtained in several interesting asymptotic parameter regimes, and the associated semiclassical 4-geometries are discussed. In restriction to Bianchi-type homogeneous 3-metrics, we compare our results with earlier discussions of homogeneous cosmological models. Moreover, we define an inner product on the Hilbert space of quantum gravity, and choose a natural gauge-condition fixing the time-gauge. With respect to this particular inner product, the Chern-Simons state of quantum gravity turns out to be a non-normalizable wavefunctional.Comment: Latex, 30 pages, 1 figure, to appear in Phys. Rev.

    A new challenge for meteorological measurements: The meteoMet project-Metrology for meteorology

    Get PDF
    Climate change and its consequences require immediate actions in order to safeguard the environment and economy in Europe and in the rest of world. Aiming to enhance data reliability and reduce uncertainties in climate observations, a joint research project called MeteoMet-Metrology for Meteorology started in October 2011 coordinated by the Italian Istituto Nazionale di Ricerca Metrologica (INRiM). The project is focused on the traceability of measurements involved in climate change: surface and upper air measurements of temperature, pressure, humidity, wind speed and direction, solar irradiance and reciprocal influences between measurands. This project will provide the first definition at the European level of validated climate parameters with associated uncertainty budgets and novel criteria for interpretation of historical data series. The big challenge is the propagation of a metrological measurement perspective to meteorological observations. When such an approach will be adopted the requirement of reliable data and robust datasets over wide scales and long terms could be better met. © 2013 AIP Publishing LLC

    NCF1 gene and pseudogene pattern: association with parasitic infection and autoimmunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutrophil cytosolic factor 1, p47<sup>phox </sup>(NCF1) is a component of the leukocyte NADPH oxidase complex mediating formation of reactive oxygen intermediates (ROI) which play an important role in host defense and autoimmunity. An individual genomic pattern of <it>ncf1 </it>and its two types of pseudogenes (reflected by the ΔGT/GTGT ratio) may influence the individual capacity to produce ROI.</p> <p>Methods</p> <p>NCF1ΔGT/GTGT ratios were correlated with clinical parameters and ROI production during <it>Plasmodium falciparum </it>malaria and with susceptibility to the autoimmune disease multiple sclerosis (MS).</p> <p>Results</p> <p>Among Gabonese children with severe malaria, ROI production from peripheral blood tended to be higher in individuals with a ΔGT/GTGT ratio ≤ 1:1. ΔGT/GTGT ratios were not associated with susceptibility to MS, but to age-of-onset among MS patients.</p> <p>Conclusion</p> <p>The genomic pattern of <it>NCF1 </it>and its pseudogenes might influence ROI production but only marginally influence susceptibility to and outcome of malaria and MS.</p

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer

    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

    Full text link
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7×6×7.27\times 6\times 7.2~m3^3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components

    Diversity and ethics in trauma and acute care surgery teams: results from an international survey

    Get PDF
    Background Investigating the context of trauma and acute care surgery, the article aims at understanding the factors that can enhance some ethical aspects, namely the importance of patient consent, the perceptiveness of the ethical role of the trauma leader, and the perceived importance of ethics as an educational subject. Methods The article employs an international questionnaire promoted by the World Society of Emergency Surgery. Results Through the analysis of 402 fully filled questionnaires by surgeons from 72 different countries, the three main ethical topics are investigated through the lens of gender, membership of an academic or non-academic institution, an official trauma team, and a diverse group. In general terms, results highlight greater attention paid by surgeons belonging to academic institutions, official trauma teams, and diverse groups. Conclusions Our results underline that some organizational factors (e.g., the fact that the team belongs to a university context or is more diverse) might lead to the development of a higher sensibility on ethical matters. Embracing cultural diversity forces trauma teams to deal with different mindsets. Organizations should, therefore, consider those elements in defining their organizational procedures. Level of evidence Trauma and acute care teams work under tremendous pressure and complex circumstances, with their members needing to make ethical decisions quickly. The international survey allowed to shed light on how team assembly decisions might represent an opportunity to coordinate team member actions and increase performance

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers

    Get PDF
    Objective: To evaluate poly(GP), a dipeptide repeat protein, and neurofilament light chain (NfL) as biomarkers in presymptomatic C9orf72 repeat expansion carriers and patients with C9orf72-associated frontotemporal dementia. Additionally, to investigate the relationship of poly(GP) with indicators of neurodegeneration as measured by NfL and grey matter volume. Methods: We measured poly(GP) and NfL levels in cerebrospinal fluid (CSF) from 25 presymptomatic C9orf72 expansion carriers, 64 symptomatic expansion carriers with dementia, and 12 noncarriers. We explored associations with grey matter volumes using region of interest and voxel-wise analyses. Results: Poly(GP) was present in C9orf72 expansion carriers and absent in noncarriers (specificity 100%, sensitivity 97%). Presymptomatic carriers had lower poly(GP) levels than symptomatic carriers. NfL levels were higher in symptomatic carriers than in presymptomatic carriers and healthy noncarriers. NfL was highest in patients with concomitant motor neuron disease, and correlated with disease severity and survival. Associations between poly(GP) levels and small grey matter regions emerged but did not survive multiple comparison correction, while higher NfL levels were associated with atrophy in frontotemporoparietal cortices and the thalamus. Interpretation: This study of C9orf72 expansion carriers reveals that: (1) poly(GP) levels discriminate presymptomatic and symptomatic expansion carriers from noncarriers, but are not associated with indicators of neurodegeneration; and (2) NfL levels are associated with grey matter atrophy, disease severity, and shorter survival. Together, poly(GP) and NfL show promise as complementary biomarkers for clinical trials for C9orf72-associated frontotemporal dementia, with poly(GP) as a potential marker for target engagement and NfL as a marker of disease activity and progression

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere
    corecore