90 research outputs found

    An embedded interfacial network stabilizes inorganic CsPbI<sub>3</sub> perovskite thin films

    Get PDF
    The black perovskite phase of CsPbI(3) is promising for optoelectronic applications; however, it is unstable under ambient conditions, transforming within minutes into an optically inactive yellow phase, a fact that has so far prevented its widespread adoption. Here we use coarse photolithography to embed a PbI(2)-based interfacial microstructure into otherwise-unstable CsPbI(3) perovskite thin films and devices. Films fitted with a tessellating microgrid are rendered resistant to moisture-triggered decay and exhibit enhanced long-term stability of the black phase (beyond 2.5 years in a dry environment), due to increasing the phase transition energy barrier and limiting the spread of potential yellow phase formation to structurally isolated domains of the grid. This stabilizing effect is readily achieved at the device level, where unencapsulated CsPbI(3) perovskite photodetectors display ambient-stable operation. These findings provide insights into the nature of phase destabilization in emerging CsPbI(3) perovskite devices and demonstrate an effective stabilization procedure which is entirely orthogonal to existing approaches

    Configural and featural processing in humans with congenital prosopagnosia.

    Get PDF
    Prosopagnosia describes the failure to recognize faces, a deficiency that can be devastating in social interactions. Cases of acquired prosopagnosia have often been described over the last century. In recent years, more and more cases of congenital prosopagnosia (CP) have been reported. In the present study we tried to determine possible cognitive characteristics of this impairment. We used scrambled and blurred images of faces, houses, and sugar bowls to separate featural processing strategies from configural processing strategies. This served to investigate whether congenital prosopagnosia results from process-specific deficiencies, or whether it is a face-specific impairment. Using a delayed matching paradigm, 6 individuals with CP and 6 matched healthy controls indicated whether an intact test stimulus was the same identity as a previously presented scrambled or blurred cue stimulus. Analyses of d´ values indicated that congenital prosopagnosia is a face-specific deficit, but that this shortcoming is particularly pronounced for processing configural facial information

    How well do computer-generated faces tap face expertise?

    Get PDF
    The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)-the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces

    The rehabilitation of face recognition impairments: A critical review and future directions

    Get PDF
    While much research has investigated the neural and cognitive characteristics of face recognition impairments (prosopagnosia), much less work has examined their rehabilitation. In this paper, we present a critical analysis of the studies that have attempted to improve face-processing skills in acquired and developmental prosopagnosia, and place them in the context of the wider neurorehabilitation literature. First, we examine whether neuroplasticity within the typical face-processing system varies across the lifespan, in order to examine whether timing of intervention may be crucial. Second, we examine reports of interventions in acquired prosopagnosia, where training in compensatory strategies has had some success. Third, we examine reports of interventions in developmental prosopagnosia, where compensatory training in children and remedial training in adults have both been successful. However, the gains are somewhat limited-compensatory strategies have resulted in labored recognition techniques and limited generalization to untrained faces, and remedial techniques require longer periods of training and result in limited maintenance of gains. Critically, intervention suitability and outcome in both forms of the condition likely depends on a complex interaction of factors, including prosopagnosia severity, the precise functional locus of the impairment, and individual differences such as age. Finally, we discuss future directions in the rehabilitation of prosopagnosia, and the possibility of boosting the effects of cognitive training programmes by simultaneous administration of oxytocin or non-invasive brain stimulation. We conclude that future work using more systematic methods and larger participant groups is clearly required, and in the case of developmental prosopagnosia, there is an urgent need to develop early detection and remediation tools for children, in order to optimize intervention outcome. © 2014 Bate and Bennetts

    The Role of Gamma-Band Activity in the Representation of Faces: Reduced Activity in the Fusiform Face Area in Congenital Prosopagnosia

    Get PDF
    Congenital prosopagnosia (CP) describes an impairment in face processing that is presumably present from birth. The neuronal correlates of this dysfunction are still under debate. In the current paper, we investigate high-frequent oscillatory activity in response to faces in persons with CP. Such neuronal activity is thought to reflect higher-level representations for faces.Source localization of induced Gamma-Band Responses (iGBR) measured by magnetoencephalography (MEG) was used to establish the origin of oscillatory activity in response to famous and unknown faces which were presented in upright and inverted orientation. Persons suffering from congenital prosopagnosia (CP) were compared to matched controls.Corroborating earlier research, both groups revealed amplified iGBR in response to upright compared to inverted faces predominately in a time interval between 170 and 330 ms and in a frequency range from 50-100 Hz. Oscillatory activity upon known faces was smaller in comparison to unknown faces, suggesting a "sharpening" effect reflecting more efficient processing for familiar stimuli. These effects were seen in a wide cortical network encompassing temporal and parietal areas involved in the disambiguation of homogenous stimuli such as faces, and in the retrieval of semantic information. Importantly, participants suffering from CP displayed a strongly reduced iGBR in the left fusiform area compared to control participants.In sum, these data stress the crucial role of oscillatory activity for face representation and demonstrate the involvement of a distributed occipito-temporo-parietal network in generating iGBR. This study also provides the first evidence that persons suffering from an agnosia actually display reduced gamma band activity. Finally, the results argue strongly against the view that oscillatory activity is a mere epiphenomenon brought fourth by rapid eye-movements (micro saccades)

    An in-depth cognitive examination of individuals with superior face recognition skills

    Get PDF
    Previous work has reported the existence of "super-recognisers" (SRs), or individuals with extraordinary face recognition skills. However, the precise underpinnings of this ability have not yet been investigated. In this paper we examine (a) the face-specificity of super recognition, (b) perception of facial identity in SRs, (c) whether SRs present with enhancements in holistic processing and (d) the consistency of these findings across different SRs. A detailed neuropsychological investigation into six SRs indicated domain-specificity in three participants, with some evidence of enhanced generalised visuo-cognitive or socio-emotional processes in the remaining individuals. While superior face-processing skills were restricted to face memory in three of the SRs, enhancements to facial identity perception were observed in the others. Notably, five of the six participants showed at least some evidence of enhanced holistic processing. These findings indicate cognitive heterogeneity in the presentation of superior face recognition, and have implications for our theoretical understanding of the typical face-processing system and the identification of superior face-processing skills in applied settings
    corecore