13 research outputs found

    FITOSSOCIOLOGIA DE FRAGMENTOS DE FLORESTA ESTACIONAL DECIDUAL NO ESTADO DE SANTA CATARINA – BRASIL

    Get PDF
    http://dx.doi.org/10.5902/1980509816582This study aimed to evaluate the species composition and structure of  Seasonal Deciduous Forest in the southern Brazilian state of Santa Catarina, including the tree/shrub component and the natural regeneration. We also compared the floristic composition between the components and discussed about the conservation condition of forests. The study was based on sample plots established by the Floristic and Forest Inventory of Santa Catarina state. Tree/shrub component was sampled by 78 plots placed systematically with 4,000 m² of sample area each, were individuals with DBH (diameter at breast height) ≥ 10 cm was measured. Regeneration (DBH 1.50 m) was sampled in subplots of 100 m² each. Structure and diversity of sample plots were analyzed in both components; species were classified by their ecologic group. To test the association between components was made a Non-metric Multidimensional Scaling (NMSD) and Mantel test. We sampled 245 species, among them 215 in the tree/shrub component (79 of them exclusive), 165 species in the natural regeneration (30 exclusive ones) and 136 species common to the two components. The association between components was confirmed with NMSD and Mantel test (r = 0.34; p = 0.001). Species with major importance value were mostly early secondary species that emphasizes the consequences of long term exploitation and degradation of Seasonal Deciduous Forest in Santa Catarina.http://dx.doi.org/10.5902/1980509816582O estudo objetivou avaliar a fitossociologia da Floresta Estacional Decidual no Estado de Santa Catarina, em seus componentes arbóreo/arbustivo e regeneração natural, bem como comparar estes quanto à composição florística e inferir sobre o estádio de conservação dos remanescentes. Foram usados dados de 78 unidades amostrais levantadas no Inventário Florístico Florestal do Estado de Santa Catarina. Em cada unidade amostral foram amostrados os componentes arbóreo/arbustivo (DAP ≥ 10 cm) em 4000 m2 e a regeneração natural (altura ≥ 1,50 m; DAP < 10 cm) em 100 m2. Foi efetuado o cálculo dos parâmetros fitossociológicos e índices de diversidade de Shannon e equabilidade, bem como, classificaram-se as espécies quanto ao grupo ecológico. Para verificar a associação entre os dois componentes executou-se uma análise de ordenação NMSD (Non-metric Multidimensional Scaling) seguida do Teste de Mantel. Foram amostradas 245 espécies, sendo 215 no componente arbóreo/arbustivo e 79 exclusivas deste, 165 na regeneração natural e 30 exclusivas deste e, 136 comuns aos dois componentes. A NMDS apresentou uma tendência de associação entre as matrizes dos dois componentes, o que foi confirmado pelo Teste de Mantel (r = 0,34; p = 0,001). A composição florística, bem como as espécies com maiores valores de importância se constituíram predominantemente de espécies secundárias, fato que evidencia o histórico de exploração e degradação da Floresta Estacional Decidual no Estado

    EpIG‐DB: A database of vascular epiphyte assemblages in the Neotropics

    Get PDF
    Vascular epiphytes are a diverse and conspicuous component of biodiversity in tropical and subtropical forests. Yet, the patterns and drivers of epiphyte assemblages are poorly studied in comparison with soil‐rooted plants. Current knowledge about diversity patterns of epiphytes mainly stems from local studies or floristic inventories, but this information has not yet been integrated to allow a better understanding of large‐scale distribution patterns. EpIG‐DB, the first database on epiphyte assemblages at the continental scale, resulted from an exhaustive compilation of published and unpublished inventory data from the Neotropics. The current version of EpIG‐DB consists of 463,196 individual epiphytes from 3,005 species, which were collected from a total of 18,148 relevés (host trees and ‘understory’ plots). EpIG‐DB reports the occurrence of ‘true’ epiphytes, hemiepiphytes and nomadic vines, including information on their cover, abundance, frequency and biomass. Most records (97%) correspond to sampled host trees, 76% of them aggregated in forest plots. The data is stored in a TURBOVEG database using the most up‐to‐date checklist of vascular epiphytes. A total of 18 additional fields were created for the standardization of associated data commonly used in epiphyte ecology (e.g. by considering different sampling methods). EpIG‐DB currently covers six major biomes across the whole latitudinal range of epiphytes in the Neotropics but welcomes data globally. This novel database provides, for the first time, unique biodiversity data on epiphytes for the Neotropics and unified guidelines for future collection of epiphyte data. EpIG‐DB will allow exploration of new ways to study the community ecology and biogeography of vascular epiphytes

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    ATLANTIC EPIPHYTES: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest

    Get PDF
    Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer-reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non-vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non-vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots

    Get PDF
    Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked

    sPlotOpen – An environmentally balanced, open-access, global dataset of vegetation plots

    No full text
    Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 m². Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked

    sPlotOpen – An environmentally-balanced, open-access, global dataset of vegetation plots

    Get PDF
    Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 m². Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked
    corecore