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Abstract
Vascular epiphytes are a diverse and conspicuous component of biodiversity in tropi-
cal and subtropical forests. Yet, the patterns and drivers of epiphyte assemblages 
are poorly studied in comparison with soil-rooted plants. Current knowledge about 
diversity patterns of epiphytes mainly stems from local studies or floristic invento-
ries, but this information has not yet been integrated to allow a better understanding 
of large-scale distribution patterns. EpIG-DB, the first database on epiphyte assem-
blages at the continental scale, resulted from an exhaustive compilation of published 
and unpublished inventory data from the Neotropics. The current version of EpIG-DB 
consists of 463,196 individual epiphytes from 3,005 species, which were collected 
from a total of 18,148 relevés (host trees and ‘understory’ plots). EpIG-DB reports 
the occurrence of ‘true’ epiphytes, hemiepiphytes and nomadic vines, including in-
formation on their cover, abundance, frequency and biomass. Most records (97%) 
correspond to sampled host trees, 76% of them aggregated in forest plots. The data is 
stored in a TURBOVEG database using the most up-to-date checklist of vascular epi-
phytes. A total of 18 additional fields were created for the standardization of associ-
ated data commonly used in epiphyte ecology (e.g. by considering different sampling 
methods). EpIG-DB currently covers six major biomes across the whole latitudinal 
range of epiphytes in the Neotropics but welcomes data globally. This novel database 
provides, for the first time, unique biodiversity data on epiphytes for the Neotropics 
and unified guidelines for future collection of epiphyte data. EpIG-DB will allow ex-
ploration of new ways to study the community ecology and biogeography of vascular 
epiphytes.

K E Y W O R D S

biodiversity, community ecology, database, forest plot, hemiepiphytes, Neotropics, nomadic 
vines, taxonomic diversity, vascular epiphytes, vegetation relevé
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1  | INTRODUC TION

Epiphytes are plants that germinate and grow non-parasitically on 
other plants, mainly trees. They can be divided into non-vascular 
(mosses, liverworts, lichens, algae and cyanobacteria) and vascular 
epiphytes (e.g. orchids, bromeliads, aroids and ferns; Mendieta-
Leiva, Bader, & Porada, 2020). In the case of the latter, ‘true’ epi-
phytes never establish contact with the soil, but this is different in 
other structurally dependent plants. Hemiepiphytes start epiphyt-
ically and later tap soil resources via aerial roots. The true nature 
of nomadic vines, which germinate on the ground and may (or may 
not) lose their initial contact with the soil, thus becoming epiphytic, 
to then restore (or not) contact via aerial roots is questioned and is 
currently under investigation (Zotz, 2013a).

Epiphytes (unless noted otherwise specifically refers to true ep-
iphytes) fulfil important ecosystem functions related to water and 
nutrient cycles and biodiversity. As epiphytes have no direct contact 
with the soil, they often capture water and nutrients from the atmo-
sphere (Feild & Dawson, 1998). Many epiphytes have a high capacity 
for water interception, storage and/or transpiration (Mendieta-Leiva 
et al., 2020), and they often recycle nutrients from the litter of their 
host tree and other epiphytes (Nadkarni & Sumera, 2004). Other 
functions can include maintaining and/or increasing air humidity 
locally (Benzing, 1998) and decreasing solar irradiation by increas-
ing canopy cover (Cruz-Angón & Greenberg, 2005), which might 
positively affect the diversity of arboreal arthropod fauna (Stuntz, 
Simon, & Zotz, 2002). In addition, epiphytes offer food and habitat 
resources for many animals such as arthropods, birds or mammals 
(Cestari, 2009; Cruz-Angón & Greenberg, 2005; Fontoura et al., 
2010).

The assembly of vascular epiphytes strongly depends on the 
growth of their host trees and the spatiotemporal variation of re-
lated ecological niches on each host tree (Parra, Acuña, Corcuera, & 
Saldaña, 2009; Taylor & Burns, 2015; Zotz & Vollrath, 2003). During 
host tree ontogeny, the total bark area as well as the environmental 
heterogeneity increases as a function of tree architecture, growth 
rate and crown dynamics (Einzmann, Beyschlag, Hofhansl, Wanek, & 
Zotz, 2014; Flores-Palacios & García-Franco, 2006; Sarmento Cabral 
et al., 2015; Wagner, Mendieta-Leiva, & Zotz, 2015; Wagner & Zotz, 
2020; Zotz & Vollrath, 2003). The characteristics of host individu-
als in combination with the vertical stratification of the forest stand 
may allow for an impressive number of epiphyte species to coexist 
in a single tree (Hietz, Winkler, Scheffknecht, & Hulber, 2012; Petter 
et al., 2016; Ruiz-Cordova, Toledo-Hernández, & Flores-Palacios, 
2014), the record being over 200 species found on a single tree in a 
cloud forest in Peru (Catchpole & Kirkpatrick, 2011). Nevertheless, 
the lack of comparative studies makes it difficult to assess whether 
major drivers of local species richness are consistent across regions.

Globally, vascular epiphytes are primarily found in the trop-
ics and subtropics, and exhibit a pronounced latitudinal diversity 
gradient, with their diversity peaking in the Neotropics (Gentry & 
Dodson, 1987; Zotz, 2016). Epiphytes contribute substantially to 
global species richness, accounting for ca. 9% of all vascular plant 

species (Zotz, 2013b) and in some cases up to 50% of local plant spe-
cies richness (Kelly, Tanner, Lughadha, & Kapos, 1994). Compared 
with other life forms, such as trees and lianas, vascular epiphytes 
show higher degrees of endemism (Cascante-Marin & Nivia-
Ruiz, 2013; Freitas et al., 2016; Van der Werff & Consiglio, 2004). 
Nonetheless, biodiversity patterns of this hyper-diverse group are 
poorly known, because most efforts to understand epiphyte diver-
sity in the Neotropics are at the level of local, idiosyncratic studies 
or floristic inventories.

At large spatial scales (e.g. elevational transects), the literature 
on biogeographic diversity patterns of epiphytes is scarce (e.g. 
Krömer, Acebey, Kluge, & Kessler, 2013; Krömer, Kessler, Gradstein, 
& Acebey, 2005; Zuleta, Benavides, López-Rios, & Duque, 2016). For 
example, the general notion that broad-scale gradients in epiphyte 
species richness are very strongly linked to moisture availability is 
based on just a few studies (Gentry & Dodson, 1987; Kreft, Köster, 
Küper, Nieder, & Barthlott, 2004; Küper, Kreft, Nieder, Köster, & 
Barthlott, 2004; Wester et al., 2011). Indeed, current hypotheses 
about macroecological patterns of epiphyte diversity are mostly 
based on regional or national species lists without a proper compi-
lation of spatially explicit data, despite the wealth of local studies, 
for which underlying data are typically not available (Mendieta-Leiva 
& Zotz, 2015). In addition, the available data on vascular epiphytes 
are taxonomically and geographically biased, with studies mostly 
focused on orchids and bromeliads, and concentrated in certain re-
gions (Zotz, 2016). A necessary step for a better understanding of 
the community ecology and biogeography of vascular epiphytes is to 
broaden our knowledge base by mobilizing and integrating existing 
data (on community composition, species abundance and richness) 
and make it available to the scientific community.

As a contribution towards this goal, we present a database in-
frastructure for collecting and integrating diversity data on vascu-
lar epiphyte assemblages. This will allow epiphyte ecology to move 
beyond local studies. We expect this effort to be both an important 
step in the development of epiphyte ecology but also in community 
ecology and biodiversity research, promoting the expansion of eco-
logical research in the tropics by including this important biodiver-
sity component. Moreover, in combination with detailed knowledge 
on the ecology and physiology of species, EpIG-DB has the potential 
to help us to understand the distribution of organisms and the extent 
of their ecological roles (e.g. contribution to the water and nutrient 
cycling, buffering potential, etc.), all of which will help us to better 
understand community and biome dynamics under current and fu-
ture changes in climate and habitats.

1.1 | International consortium on epiphytic plant 
assemblages

The Epiphyte Inventory Group (EpIG) was formed in 2018 as a work-
ing group for collecting and analysing vascular epiphyte assemblage 
data. The group was established during a workshop at the University 
of Marburg (Germany), with the participation of 25 experts in the fields 
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of epiphyte ecology, database management and macroecology. The 
participants of the workshop represented most of the research groups 
working on vascular epiphytes in the Neotropics. The aims of the data-
base consortium were (a) to create a database following international 
standards for integration of plant community data; (b) to establish the 
specific properties of a database for managing and integrating data on 
vascular epiphyte assemblages; (c) to discuss taxonomic issues related 
to data generally collected on vascular epiphytes; (d) to develop a road-
map for updating and analysing this database. These objectives were 
achieved by a combination of plenary discussions and parallel sessions 
with topic specialists, defining a set of agreement protocols that were 
synthesized in a document that served as a basis for this paper.

1.2 | Description of epiphyte assemblage records

We used TURBOVEG for Windows (Hennekens & Schaminee, 2001) 
as the reference software for digitizing data, implementing a species 
checklist (‘epiphytes’) based on a new Global Checklist of Vascular 
Epiphytes (Zotz, unpub., an updated version of Zotz, 2013b). In the 
database, the minimum sampling unit of reference is a host individ-
ual (generally a tree, thus hereafter referred to as such), which is also 
marked and sampled (e.g. ID, tree species, tree height, tree diameter at 
breast height or DBH, Appendix S1). Many times, host individuals were 
sampled nested within forest plots (Figure 1). Typical information for 
a sampled host includes the presence, surface cover, abundance, fre-
quency or biomass of resident epiphytes. Frequently, datasets also re-
port the absence of epiphytes from a potential host. In very few cases, 
the minimum sampling unit is a plot, i.e. an area in which epiphytes 
have been sampled without distinction of host individuals, referred 
to as ‘understory’ plots (Krömer, Kessler, & Gradstein, 2007). In ‘un-
derstorey’ plots, epiphytes may be sampled until a determined height 
or throughout the whole canopy (sensu Moffett, 2000). In the former 
case, this is because epiphyte flora on shrubs and small trees in the for-
est understory is usually different from that on the large canopy trees 
(Krömer et al., 2007). Each species list sampled on a single host indi-
vidual or in an ‘understory’ plot corresponds to a species assemblage, 
called a ‘relevé’ in TURBOVEG. When species were sampled on host 
individuals nested within forest plots (Figure 1), the records were kept 
to the minimum sampling unit (host individual), thus allowing the user 
to summarize the data at larger scales when needed.

We accepted records of vascular epiphytes in the broad sense 
(‘true’ epiphytes, hemiepiphytes and nomadic vines sensu Zotz 
(2013a)). It is permitted to include morphospecies but vines, lianas 
and accidental epiphytes are excluded (Zotz, 2013a). Morphospecies 
are considered under the assumption that the data contributors made 
a conscientious effort to differentiate these as potentially different 
species. We are aware that in the majority of cases these morphos-
pecies will remain unresolved but, in some cases, species names may 
be assigned later. Nonetheless, we consider this data necessary and 
important to answer several questions, for example those related to 
alpha diversity. Morphospecies need to include the data contribu-
tors' collection number (e.g. ‘Polypodium SB1001’) or an unambiguous 

name assigned by the contributor. Species that are identified as ‘cf.’ 
can be kept if the record is a distinct morphospecies (removing the 
cf. and indicating the epithet as the species it is compared with, e.g. 
Polypodium cf. vulgare becomes Polypodium vulgare). Species that are 
identified as ‘aff.’ can be considered as a morphospecies. For example, 
‘vel. aff.’ means: this species or related, while ‘aff.’ means not this spe-
cies, but related, all as part of the epithet or morphospecies name (e.g. 
Polypodium aff. vulgare becomes Polypodium affvulgare). Varieties and 
subspecies are all considered at the species level. Juveniles that could 
not be determined or differentiated into morphospecies are excluded. 
Morphospecies are manually added to the species checklist but they 
can be omitted in specific data analyses.

1.3 | Data collection, harmonization and integration

We contacted the largest number of researchers working on epi-
phytes that we could reach and provided a protocol for importing 

F I G U R E  1   Graphical representation of the structure of 
epiphyte inventory data. Vascular epiphyte assemblage records 
in EpIG-DB 1.0 have as minimum sampling unit the entire host 
individual for which relevant ecological data must be collected 
(Appendix S1). Commonly, host individuals (mostly trees, shown 
as dark green circles of different sizes according to their diameter 
at breast height) may be sampled within a forest plot (cyan 
squares), thus trees are nested within forest plots. The minimum 
sampling unit may also be an ‘understory’ plot, i.e. a determined 
volume where epiphytes have been sampled without distinction 
of the host individuals (dotted line squares), sometimes focused 
on the understory, thus of a certain height. Photo credit to the 
Department of Geoinformatics, Munich University of Applied 
Sciences. Forest diagram modified after Gunnar Petter [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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data into TURBOVEG, a comprehensive database management sys-
tem for vegetation data (Hennekens & Schaminee, 2001). The inte-
gration was carried out using the species checklist ‘epiphytes’ and a 
predefined list of associated data (‘header data’ in TURBOVEG, see 
below). As our data protocol included specialized qualifiers for spe-
cies data (e.g. biomass data) and header data (e.g. host ID), we rec-
ommended updating TURBOVEG with a specific version provided by 
the software developer (S. Hennekens). The data contributors were 
asked to upload their data to the updated version of TURBOVEG 
using the following steps: (a) to clean species names using taxonstand 
(Cayuela, Granzow-de la Cerda, Albuquerque, & Golicher, 2012) and 
the database of The Plant List (2013) to facilitate data import; (b) 
to standardize their associated data (Appendix S1); (c) to provide a 
metadata statement including the Author (name of the person/peo-
ple who collected the data), Reference (if published), Project (if data 
was collected within the frame of a specific project), and Funding 
institution (if the project was funded; Appendix S2).

The data associated with each record (‘header data’) was pre-
defined by the EpIG working group for harmonizing the individ-
ual datasets before integration. We added 18 additional fields 
(Appendix S1) to the header data available by default in TURBOVEG, 
which take into account the protocols used for sampling epiphytes 
(Gradstein et al., 1996; Gradstein, Nadkarni, Holz, Nöske, & Krömer, 
2003; Krömer & Gradstein, 2016; Zotz & Bader, 2011). Twelve of 
these fields are mandatory because they provide essential informa-
tion regarding sampling protocols (e.g. longitude and latitude, host 
DBH, and naturalness as in Bruelheide et al. (2019)). The other six 
optional fields may be useful for specific analyses (e.g. x and y coor-
dinates, host height, host name, vegetation type). Header data were 
integrated into a single database into TURBOVEG. The data aggre-
gated at the forest plot level were registered in the Global Index of 
Vegetation-Plot Databases (www.givd.org) with the ID-Number SA-
00-003 and added to the sPlot consortium (www.idiv/splot.de).

1.4 | Description of the database

The current version of EpIG-DB (version 1.0; December 2019) com-
prises 18,148 relevés of which 17,762 represent trees and 386 rep-
resent ‘understorey’ plots, in which epiphytes were sampled without 
reference to trees. Most trees (76%) were sampled within 687 forest 
plots ranging from 25 to 22,500 m2 (Figure 1, Appendix S3). These 
and the ‘understorey’ plots comprise the EpIG-DB plot version, 
which will be part of sPlot (3.0) after aggregating the information at 
the forest plot and not the host tree level.

The database includes 2045 identified species of vascular ep-
iphytes and 960 morphospecies. Species are distributed within 
411 genera and 60 families. The taxonomic distribution of species 
per family reflects the expected pattern with orchids representing 
most of the species richness, making up 38% of species, followed by 
bromeliads and aroids (768, 241, and 201 epiphyte species, respec-
tively). These three families alone make up almost 60% of species 
richness. Distribution of genera across families is slightly different, 

although orchids are also the most genus-rich family, comprising 
over 40% of genera. They are followed by polypod ferns, bromeliads 
and ericads. Together, these families comprise almost 60% of all gen-
era (142, 28, 17, and 13 genera, respectively).

The organization of the EpIG-DB reflects the ecological partic-
ularities of vascular epiphytes as structurally dependent life forms 
with 18 new fields added to the standard TURBOVEG header data 
(Appendix S1). In the case of trees being nested within a forest 
plot, information for both the plot and host individuals is included 
in the relevé ID by combining the names of the plot and tree IDs. 
In addition, the coordinates of each tree can be provided (X and Y 
coordinates, Appendix S1) in combination with a tree ID and the cor-
responding plot ID. While the ID data is mandatory, X and Y coor-
dinates data were provided for just 8% of all forest plots. When all 
trees in a forest plot were sampled, relevés may also be ‘empty’. This 
is the case for 30% of the relevés. Alternatively, when the minimum 
sampling unit is an ‘understory’ plot, i.e. an area where the epiphytes 
were sampled without distinction of hosts, the unambiguous distinc-
tion between ‘understory’ plot or tree is given in the field ‘plot/tree’.

Sampling of vascular epiphytes was carried out differently de-
pending on forest type and the research aims of each field team. 
Thus the specification of the sampling method (Appendix S1) is pro-
vided for all relevés. The most common sampling method included a 
combination of tree climbing and ground observation with binocu-
lars (56%). Ground observation with binoculars or climbing alone is 
used in second and third place (31% and 11%, respectively), and only 
a very small number of relevés were sampled using ground observa-
tion without optical devices (<1%). The assessment of the abundance 
is also heterogeneous in epiphyte sampling. In addition to presence/
absence, which is straightforward, abundance may be quantified as 
the number of individuals or stands (Sanford, 1968), biomass or fre-
quency (Appendix S1). The latter refers to the number of Johansson 
zones (Johansson, 1974) in which an epiphyte species was found 
within a single host. In EpIG-DB the majority of relevés had some 
measure of abundance (74%, mostly number of individuals), while 
presence/absence data was only recorded for 20% of trees and for 
all those plots where sampling was not on a tree base (‘understory’ 
plots). To a smaller extent data represent frequency and biomass (ca. 
6%).

Information on the taxonomic groups and the life forms (sensu 
Zotz, 2013a) sampled were included. In almost 60% of relevés all 
vascular plants were sampled, while in ca. 30% only angiosperms 
and in a 13% of relevés only selected taxa were sampled (mostly 
ferns, orchids and bromeliads). The majority of the relevés include all 
three life forms (45%, epiphytes, hemiepiphytes and nomadic vines) 
or a combination of epiphytes and either hemiepiphytes (20%) or 
nomadic vines (11%). Only a small number of relevés include a single 
life form (e.g. epiphytes only 16% and hemiepiphytes only 8%).

The characteristics of host individuals are well documented 
in EpiG-DB. For example, 92% of all trees have DBH data while 
63% have height data and 85% have been identified at least to the 
genus level. The data on host size revealed that the DBH of the 
majority of the sampled trees fall between 5  cm and 30 cm with 

http://www.givd.org
http://www.idiv/splot.de
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very few large trees >100 cm DBH comprising about 2% (390 trees, 
Appendix S4).

Naturalness of sampling sites was provided for all relevés in all 
datasets and indicates that relevés are mainly distributed in natural 
ecosystems (66%) and to a lesser degree in anthropogenic (19%) and 
semi-natural (15%) ecosystems.

1.5 | Spatial and sample coverage

The first version of the database covers most of the potential latitu-
dinal distribution of vascular epiphytes in Tropical and Subtropical 
America (Figure 2). We plotted all records (sampled .understory. 
plots and hosts) across a map of terrestrial world biomes for the 
American tropics and subtropics. We used the classification of the 
WWF (Olson et al., 2001), which comprises 14 terrestrial world bi-
omes based on existing global maps of floristic or zoogeographic 
provinces, the world’s biotic province maps and global maps of 
broad vegetation types, and defines 867 Ecoregions based on re-
gional classification systems and expert opinion. Our datasets are 
distributed across nine countries, eight biomes and 45 WWF ecore-
gions out of the 234 recorded in the Neotropics (Olson et al., 2001).

To assess the climatic representativity of our data, we obtained 
two bioclimatic variables (mean annual temperature and annual 
precipitation) for all records using geographic coordinates from 
CHELSA (Karger et al., 2017). For matching our data with major 
gradients of mean annual temperature and annual precipitation we 
applied Whittaker’s biome model (Whittaker, Levin, & Root, 1975), 
using the plotbiomes (Ricklefs, 2008, https://github.com/valen​tinit​
nelav​/plotb​iomes) and ggplot2 (Wickham, 2016) packages. The cli-
mate range of datasets covers tropical and subtropical biomes of the 
Neotropics where epiphytes are generally found (Figure 3). Some 
datasets were located outside of designated biome areas, such as 
in cold and very rainy ecoregions from the tropics (e.g. the Peruvian 
Yungas, Eastern Cordillera real montane forests and northern 
Andean páramo; Figure 3).

Finally, for assessing relative sample completeness (the relation-
ship between sample coverage and species diversity, Chao et al., 
2014) across WWF Ecoregions (Olson et al., 2001), we used sam-
pled-based rarefaction curves based on interpolation and extrapola-
tion of species richness with the iNext package (Hsieh, Ma, & Chao, 
2016). Species diversity refers to species richness (Hill numbers, 
q = 0, Hsieh et al., 2016). Sample coverage was calculated using fre-
quency data and only for ecoregions with at least 100 trees sampled. 
Sampling completeness reveals the large variability in sampling cov-
erage across ecoregions and points to those where more sampling 
effort is needed (Figure 4, Appendix S5).

In ecoregions of South America, very few of the confidence 
intervals overlap except at very small coverage values, implying 
significant differences in epiphyte diversity among ecoregions at 
comparable coverage; this was not the case for most ecoregions in 
Central America (Figure 4), where diversity seems to be comparable 
among most ecoregions. In certain ecoregions, undersampling was 

very high (e.g. Bolivian Yungas and Cauca Valley montane forests), 
whereas in some other regions (e.g. Chaco, Bahia interior forests 
and Campos Rupestre Montane savanna) sampling seems to have 
reached a high degree of completeness (Figure 4).

1.6 | Further perspectives

EpIG-DB consists of fine-grained data sampled at the local scale and 
integrated at a wide geographical spread, including many datasets with 
unpublished information on epiphyte abundance, which have been 
made available to the scientific community. Analyses of the database 
will be instrumental not only in answering questions related to large-
scale patterns of epiphyte assemblages, but will also contribute to the 
understanding of plant diversity in general with a broad biogeographic 
and macroecological focus. EpIG-DB also aims to collate vascular epi-
phyte inventory data across the world. The current database comprises 
a substantial and important amount of data and sites - from nine coun-
tries, eight biomes and 45 ecoregions in the Neotropics, and it also re-
veals how many ecoregions and ecosystem types are not yet accounted 
for (Appendix S5). This effort needs to be extended geographically and, 
most importantly, it needs to include data already collected which may 
or may not be described in grey literature and is at risk of being lost.

Future efforts in data sampling or data collection will need to 
consider current biases towards Central America and southeast/
southern Brazil, near the Atlantic coast and towards natural hab-
itats. The lack of data from the Caribbean and Amazonia reflects 
undersampling in these regions, where current data are distributed 
across a few locations. The inclusion of epiphyte inventory data from 
Africa, Asia and Oceania is planned and will need to start with the 
most available data, but it is unlikely that these will cover the lat-
itudinal and climatic gradients as well as the current dataset does 
in the Neotropics. Therefore, datasets from tropical and subtropical 
regions outside of the Neotropics are highly welcome.

Vascular epiphytes as structurally dependent organisms, which 
grow on dynamic island-like substrates, fundamentally differ from 
terrestrial plants in their population and community dynamics. 
Further, their considerable contribution to diversity and biomass in 
tropical ecosystems makes them an important Neotropical diver-
sity component. Compared with, for example trees, epiphytes are 
particularly vulnerable to the effects of landscape modification and 
climate change, particularly in montane cloud forests, because of 
their tight coupling with the atmosphere and structural dependency 
(Laube & Zotz, 2006; Zotz, Bogusch, Hietz, & Ketteler, 2010; Zotz & 
Hietz, 2001). Therefore, the presence of certain species may reflect 
a conserved state of the forest (Benzing, 1990). Predictions of the 
effect of climate change for mountain forests imply a decrease in 
atmospheric water availability (e.g. dew and mist; Feeley et al., 2011; 
Urrutia & Vuille, 2009), which would negatively affect epiphyte bio-
mass and have a cascading effect in the ecosystem. Efforts in con-
servation will be more informed and ultimately more successful with 
a clear theoretical understanding of the diversity and dynamics of 
epiphyte assemblages.

https://github.com/valentinitnelav/plotbiomes
https://github.com/valentinitnelav/plotbiomes
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1.7 | Database consortium and data use agreements

We strongly encourage epiphyte ecologists to contribute to this 
database initiative. To this end, we recommend future epiphyte 

inventories and database managers collect in the standardized 
format proposed here, including at least the following data: (a) 
epiphyte abundance per host individual, (b) epiphyte species, (c) 
host individual species, (d) host tree DBH and height, (e) host 

F I G U R E  2   Spatial distribution of 40 datasets integrated in EpIG-DB 1.0 across the Neotropic WWF biomes [Colour figure can be viewed 
at wileyonlinelibrary.com]

F I G U R E  3   Climate envelope of EpIG-DB 1.0 data (black dots) across Whittaker biomes. The Whittaker plot shows the distribution of 
vegetation types as a function of mean annual temperature and precipitation [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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coordinates, and (f) whenever sampling within forest plots to also 
include empty (potential) host individuals. The EpIG-DB consor-
tium is open to any researcher willing to contribute data, espe-
cially from poorly sampled regions within the Neotropics and 
across the world.

For the completion of first data analyses, only database contribu-
tors can access and use the data during the first two years (until March 
2022). After the embargo period, all data will be made available to any 
researcher upon request through a digital repository (e.g. Zenodo) that 
provides the option of conditional access. As the database contains 

georeferenced records and information of abundance, there is a dan-
ger of misuse for the illegal collection of endangered species. We, 
therefore, will not allow completely open access, but researchers with 
a legitimate interest will be given full access by the database curators 
under conditions ensuring that the data will not be shared outside of 
academia. Regarding authorship agreements, by default, we will apply 
the principles stated in the sPlot rules (Bruelheide et al., 2019) to 
which this database is also contributing. Any request should be done 
by contacting the Custodian (Glenda Mendieta-Leiva) or the Deputy 
Custodian (Borja Jiménez-Alfaro).

F I G U R E  4   Coverage-based rarefaction (interpolation) and extrapolation plots for vascular epiphyte diversity per ecoregion and 
subcontinent. The curves indicate the observed (interpolated) and extrapolated species richness with respect to sample coverage (number 
of trees) for 28 out of the 45 ecoregions for which at least 100 entire trees were sampled. For (a) Central America there are nine ecoregions 
and for (b) South America 19 ecoregions. The colour gradient follows species diversity according to ecoregion and the shaded polygons 
represent 95% confidence intervals. Calculations are based on incidence data [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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