3,930 research outputs found

    Efficient melt stabilization of polyethylene with quercetin, a flavonoid type natural antioxidant

    Get PDF
    The potential use of quercetin, a flavonoid type natural antioxidant, as a stabilizer in polyethylene was explored in this work. Its efficiency was compared to that of Irganox 1010, a hindered phenolic antioxidant used routinely in industrial practice, both in the presence and the absence of a phosphorous secondary stabilizer. The study was carried out with a Phillips type polyethylene and the efficiency of the additive packages was checked by various methods on samples produced by multiple extrusions. Quercetin content changed from 0 to 1000 ppm in 10 steps. The results showed that quercetin is a very effi-cient antioxidant. It prevents the formation of long chain branches already at a concentra-tion as small as 50 ppm and its dosage at 250 ppm renders the polymer sufficient long term residual stability. The efficiency of quercetin is considerably better than that of Irganox 1010, the hindered phenolic antioxidant used as reference stabilizer. The difference in efficiency might be explained with the dissimilar number of active –OH groups on the two molecules, but the stabilization mechanism of quercetin may be also different from that of I1010. Quercetin interacts with the phosphonite secondary stabilizer used, which improves dispersion and increases efficiency. Besides its advantages, quercetin has also some drawbacks (very high melting temperature, poor solubility in polyethylene and strong yellow color), which must be overcome before the substance can be used in practice

    Study of the effect of natural antioxidants in polyethylene: Performance of ÎČ-carotene

    Get PDF
    The effect of ÎČ-carotene on the behaviour of polyethylene stabilized with α-tocopherol and a phosphonite antioxidant was studied under processing and storage conditions. The amount of ÎČ-carotene ranged between 0 and 2000 ppm. The polymer was characterised by different methods after processing then during and after storage at ambient temperature in light and dark. ÎČ-Carotene hinders the oxidation of polyethylene and does not increase the chain extension reactions during processing, though more vinyl groups and phosphonite molecules react. ÎČ-Carotene colours polyethylene strongly already at low concentrations. The reactions of the polymer and ÎČ-carotene are affected strongly by the storage conditions. The presence of ÎČ-carotene does not influence the stabilizing efficiency of the primary and secondary antioxidants. In dark the molecular structure of the polymer does not change appreciably, while the reactions of ÎČ-carotene lead to an increase in the yellowness index. In light the molecular characteristics of polyethylene undergo significant changes indicating long chain branching. The polymer fades rapidly after an induction period. The length of the induction period is not influenced by light. The rate of the degradation reactions of ÎČ-carotene during storage is controlled by its concentration and film thickness. Visible autoaccelerated decomposition in light renders ÎČ-carotene candidate as an indicator in active packaging materials

    Four Generations: SUSY and SUSY Breaking

    Get PDF
    We revisit four generations within the context of supersymmetry. We compute the perturbativity limits for the fourth generation Yukawa couplings and show that if the masses of the fourth generation lie within reasonable limits of their present experimental lower bounds, it is possible to have perturbativity only up to scales around 1000 TeV. Such low scales are ideally suited to incorporate gauge mediated supersymmetry breaking, where the mediation scale can be as low as 10-20 TeV. The minimal messenger model, however, is highly constrained. While lack of electroweak symmetry breaking rules out a large part of the parameter space, a small region exists, where the fourth generation stau is tachyonic. General gauge mediation with its broader set of boundary conditions is better suited to accommodate the fourth generation.Comment: 27 pages, 5 figure

    Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?

    Get PDF
    International audienc

    Renal Involvement in Leptospirosis: The Effect of Glycolipoprotein on Renal Water Absorption

    Get PDF
    on vasopressin (Vp) action in the guinea pig inner medullary collecting duct (IMCD). Copenhageni, GLPc, n = 5); Group II, IMCD from normal guinea-pigs in the presence of GLPc (GLPc group, n = 54); Group III, IMCD from injected animals with GLPc ip (n = 8). (GLPp, non pathogenic, 250 ”g) did not alter Vp action. In Group III, GLPc (250 ”g) injected intraperitoneally produced a decrease of about 20% in IMCD Aquaporin 2 expression.The IMCD Pf decrease caused by GLP is evidence, at least in part, towards explaining the urinary concentrating incapacity observed in infected guinea-pigs

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg⁡(E/eV)=18.5−19.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe
    • 

    corecore