118 research outputs found

    Probing core and shell contributions to exchange bias in Co/Co3O4 nanoparticles of controlled size

    Get PDF
    Coupling at the interface of core/shell magnetic nanoparticles is known to be responsible for exchange bias (EB) and the relative sizes of core and shell components are supposed to influence the associated phenomenology. In this work, we have prepared core/shell structured nanoparticles with a total average diameter around ∼27 nm and a wide range of shell thicknesses through the controlled oxidation of Co nanoparticles well dispersed in an amorphous silica host. Structural characterizations give compelling evidence of the formation of Co3O4 crystallite phase at the shells surrounding the Co core. Field cooled hysteresis loops display nonmonotonous dependence of the exchange bias HE and coercive HC fields, that become maximum for a sample with an intermediate shell thickness, at which lattice strain is also maximum for both phases. The EB effects persist up to temperatures above the ordering temperature of the oxide shell. Results of our atomistic Monte Carlo simulations of particles with the same size and composition as in experiments are in agreement with the experimental observations and have allowed us to identify a change in the contribution of the interfacial surface spins to the magnetization reversal, giving rise to the observed maximum in HE and HC

    Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression

    Get PDF
    The DNA damage response comprises DNA repair, cell-cycle checkpoint control, and DNA damage-induced apoptosis that collectively promote genomic integrity and suppress tumorigenesis. Previously, we have shown that the Chk2 kinase functions independently of the Mre11 complex (Mre11, Rad50, and Nbs1) and ATM in apoptosis and suppresses tumorigenesis resulting from hypomorphic alleles of Mre11 or Nbs1. Based on this work, we have proposed that Chk2 limits the oncogenic potential of replication-associated DNA damage. Here we further address the role of Chk2 and damage-induced apoptosis in suppressing the oncogenic potential of chromosome breaks. We show that loss of Chk2 or a mutation in p53 (R172P), which selectively impairs its function in apoptosis, rescued the lethality of mice lacking Lig4, a ligase required for nonhomologous end-joining (NHEJ) repair of DNA double-strand breaks in G0/G1. In contrast to Lig4(−/−)p53(−/−) mice, Lig4(−/−)Chk2(−/−) and Lig4(−/−)p53(R172P/R172P) mice were not prone to organ-specific, rapid tumorigenesis. Although the severe NHEJ deficiency of Lig4(−/−) was a less potent initiator of tumorigenesis in the p53(R172P/R172P) and Chk2(−/−) backgrounds, where p53 cell-cycle functions are largely intact, even mild defects in the intra-S and G2/M checkpoints caused by mutations in Nbs1 are sufficient to influence malignancy in p53(R172P/R172P) mice. We conclude that the oncogenic potential of double-strand breaks resulting from NHEJ deficiency is highly restricted by nonapoptotic functions of p53, such as the G1/S checkpoint or senescence, suggesting that the particular facets of the DNA damage response required for tumor suppression are dictated by the proliferative status of the tumor-initiating cell

    Specific detection of interferon regulatory factor 5 (IRF5): A case of antibody inequality

    Get PDF
    Interferon regulatory factor 5 (IRF5) is a member of the IRF family of transcription factors. IRF5 was first identified and characterized as a transcriptional regulator of type I interferon expression after virus infection. In addition to its critical role(s) in the regulation and development of host immunity, subsequent studies revealed important roles for IRF5 in autoimmunity, cancer, obesity, pain, cardiovascular disease, and metabolism. Based on these important disease-related findings, a large number of commercial antibodies have become available to study the expression and function of IRF5. Here we validate a number of these antibodies for the detection of IRF5 by immunoblot, flow cytometry, and immunofluorescence or immunohistochemistry using well-established positive and negative controls. Somewhat surprising, the majority of commercial antibodies tested were unable to specifically recognize human or mouse IRF5. We present data on antibodies that do specifically recognize human or mouse IRF5 in a particular application. These findings reiterate the importance of proper controls and molecular weight standards for the analysis of protein expression. Given that dysregulated IRF5 expression has been implicated in the pathogenesis of numerous diseases, including autoimmune and cancer, results indicate that caution should be used in the evaluation and interpretation of IRF5 expression analysis

    MORPHIC : programmable photonic circuits enabled by silicon photonic MEMS

    Get PDF
    In the European project MORPHIC we develop a platform for programmable silicon photonic circuits enabled by waveguide-integrated micro-electro-mechanical systems (MEMS). MEMS can add compact, and low-power phase shifters and couplers to an established silicon photonics platform with high-speed modulators and detectors. This MEMS technology is used for a new class of programmable photonic circuits, that can be reconfigured using electronics and software, consisting of large interconnected meshes of phase shifters and couplers. MORPHIC is also developing the packaging and driver electronics interfacing schemes for such large circuits, creating a supply chain for rapid prototyping new photonic chip concepts. These will be demonstrated in different applications, such as switching, beamforming and microwave photonics

    mTOR signaling in VIP neurons regulates circadian clock synchrony and olfaction

    Get PDF
    Mammalian/mechanistic target of rapamycin (mTOR) signaling controls cell growth, proliferation, and metabolism in dividing cells. Less is known regarding its function in postmitotic neurons in the adult brain. Here we created a conditional mTOR knockout mouse model to address this question. Using the Cre-LoxP system, the mTOR gene was specifically knocked out in cells expressing Vip (vasoactive intestinal peptide), which represent a major population of interneurons widely distributed in the neocortex, suprachiasmatic nucleus (SCN), olfactory bulb (OB), and other brain regions. Using a combination of biochemical, behavioral, and imaging approaches, we found that mice lacking mTOR in VIP neurons displayed erratic circadian behavior and weakened synchronization among cells in the SCN, the master circadian pacemaker in mammals. Furthermore, we have discovered a critical role for mTOR signaling in mediating olfaction. Odor stimulated mTOR activation in the OB, anterior olfactory nucleus, as well as piriform cortex. Odor-evoked c-Fos responses along the olfactory pathway were abolished in mice lacking mTOR in VIP neurons, which is consistent with reduced olfactory sensitivity in these animals. Together, these results demonstrate that mTOR is a key regulator of SCN circadian clock synchrony and olfaction

    String non(anti)commutativity for Neveu-Schwarz boundary conditions

    Full text link
    The appearance of non(anti)commutativity in superstring theory, satisfying the Neveu-Schwarz boundary conditions is discussed in this paper. Both an open free superstring and also one moving in a background antisymmetric tensor field are analyzed to illustrate the point that string non(anti)commutativity is a consequence of the nontrivial boundary conditions. The method used here is quite different from several other approaches where boundary conditions were treated as constraints. An interesting observation of this study is that, one requires that the bosonic sector satisfies Dirichlet boundary conditions at one end and Neumann at the other in the case of the bosonic variables XμX^{\mu} being antiperiodic. The non(anti)commutative structures derived in this paper also leads to the closure of the super constraint algebra which is essential for the internal consistency of our analysis.Comment: new references added, original article appeared in Int.J.Theor.Phy

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr
    corecore