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Specific detection of interferon 
regulatory factor 5 (IRF5): A case of 
antibody inequality
Dan Li1,2, Saurav De1,2,3, Dan Li1, Su Song1, Bharati Matta1 & Betsy J. Barnes1,2

Interferon regulatory factor 5 (IRF5) is a member of the IRF family of transcription factors. IRF5 was 
first identified and characterized as a transcriptional regulator of type I interferon expression after 
virus infection. In addition to its critical role(s) in the regulation and development of host immunity, 
subsequent studies revealed important roles for IRF5 in autoimmunity, cancer, obesity, pain, 
cardiovascular disease, and metabolism. Based on these important disease-related findings, a large 
number of commercial antibodies have become available to study the expression and function of 
IRF5. Here we validate a number of these antibodies for the detection of IRF5 by immunoblot, flow 
cytometry, and immunofluorescence or immunohistochemistry using well-established positive and 
negative controls. Somewhat surprising, the majority of commercial antibodies tested were unable 
to specifically recognize human or mouse IRF5. We present data on antibodies that do specifically 
recognize human or mouse IRF5 in a particular application. These findings reiterate the importance 
of proper controls and molecular weight standards for the analysis of protein expression. Given 
that dysregulated IRF5 expression has been implicated in the pathogenesis of numerous diseases, 
including autoimmune and cancer, results indicate that caution should be used in the evaluation and 
interpretation of IRF5 expression analysis.

The interferon regulatory factor 5 (IRF5) gene encodes proteins that bind to DNA and regulate the transcription 
of genes important for innate and adaptive immunity, as well as cell growth regulation and apoptosis1–7. IRF5 was 
originally cloned from an expressed sequence tag (EST) human dendritic cell cDNA library and human B cells1. 
The first analysis of its expression was by Northern blot using a commercially available human healthy donor tis-
sues blot. Constitutive IRF5 mRNA expression was detected primarily in lymphoid tissues and peripheral blood 
lymphocytes (PBL) with the highest levels detected in spleen and PBL1. In all samples identified to express IRF5, 
two transcripts were detected. Subsequent findings from multiple labs have now shown that IRF5 exists as mul-
tiple alternatively spliced transcripts that encode distinct isoforms3. IRF5 expression was also analyzed in human 
tumor cell lines and those cell lines expressing IRF5 showed only one transcript1,3. Notably, all immortalized 
lymphoma and leukemia cell lines examined at that time showed the absence of IRF5 mRNA expression.

To date, IRF5 is best known for its 1) central role in pathogen-induced immunity via activation by the 
MyD88-dependent Toll-like receptor (TLR) signaling pathway8,9, 2) identification as an autoimmune suscepti-
bility gene10–19, and 3) tumor suppressor function4,6,7,20,21. With the availability of Irf5 transgenic knockout mice, 
however, IRF5 has been also shown to play important roles in macrophage polarization, pain management, obe-
sity, cardiovascular disease, systemic lupus erythematosus (SLE), arthritis and metabolic dysfunction19,22–31. IRF5 
proteins generally reside in the cytoplasm of a quiescent cell and upon stimulation (with virus, TLR ligands or 
DNA damage, etc.) become activated via post-translational modification(s), resulting in nuclear translocation 
and binding to the promoters of target genes2. IRF5’s function (or dysfunction) in autoimmune disease and can-
cer is tightly linked to its expression. In the case of autoimmune diseases such as SLE, polymorphisms in the IRF5 
gene, referred to as risk polymorphisms, result in, or associate with, elevated IRF5 expression11,32–34. Conversely, 
in the case of cancer, IRF5 expression is often found to be downregulated (or absent) in malignant versus 
non-malignant cells. More recent data on the analysis of IRF5 expression and function in different cancer types 
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has revealed that in some cases, such as in splenic marginal zone lymphoma, IRF5 expression is decreased21, while 
in Hodgkin’s lymphoma, IRF5 expression is elevated35. The same may be true for autoimmune diseases as both 
risk and non-risk polymorphisms have been associated with susceptibility to and protection from, respectively, a 
particular disease. In either case, analysis of IRF5 expression by immune-based techniques, such as immnuoblot, 
flow cytometry, and immunohistochemistry, has become very important for our understanding of IRF5 function 
(or dysfunction) in a disease-specific context.

In the current study, we used established positive and negative controls for the analysis of IRF5 antibody spec-
ificity in human cells and tissues, and Irf5 gene knockout (ko) mice for analysis in murine cells and tissues. Data 
presented herein indicate that caution should be used in the interpretation of findings from particular antibodies 
as many are not specific for IRF5; a number of commonly used antibodies detect IRF5 in negative controls. We 
have identified a few key antibodies that are very good at the specific detection of IRF5 expression in particular 
applications. Given the clinical utility of IRF5 expression as a biomarker of disease susceptibility and severity, 
appropriate controls and molecular weight standards should be included and published in order to authenticate 
antibody specificity, as well as scientific findings.

Results
In primary leukocytes and lymphocytes, IRF5 expression is highest in monocytes and macrophages, lower in 
dendritic cells and B cells, and nearly undetectable in T cells and NK cells. For the validation of currently avail-
able commercial anti-IRF5 antibodies, three immortalized human lymphoid cell lines – THP1 monocytic mac-
rophages, Ramos B cells, and Jurkat T cells – that express distinctly different levels of endogenous IRF5 transcript 
and protein expression were used. Expression differences were confirmed by real-time quantitative polymerase 
chain reaction (qRT-PCR) and immunoblot analysis using lysates from cell lines newly obtained from ATCC 
and commercially purchased lysates (Fig. 1A,B). Protein levels were confirmed with previously validated anti-
bodies that are no longer available - Cell Signaling #3257 (cs3257) or clone 2E3-1A11 from Novus Biologicals 
(H00003663-M01) and Sigma (WH0003663M1). As expected, cs3257 detected high levels of IRF5 in protein 
lysates from THP1 cells1,3. Compared to THP1, Ramos B cells expressed dramatically lower levels, and Jurkat T 
cells, as most T cell lines, expressed little to no IRF5 (Fig. 1B). Surprisingly, we have found that some companies 
used Jurkat T cells as a positive control for IRF5 protein detection; to our knowledge, there have been no publi-
cations showing IRF5 expression in Jurkat cells. To the contrary, two recent publications have shown that Jurkat 
T cells lack IRF5 expression36,37. Furthermore, analysis of Jurkat RNAseq reads from ENCODE using the UCSC 
Genome Browser indicate that Jurkat cells either express too low IRF5 that reads are not detected across exons or 
expression is absent38,39.

Using protein lysates from the three cell lines, seven commercially available anti-IRF5 antibodies were tested 
for detection specificity by comparing to the previously available and validated cs3257 antibody. Key experi-
mental factors, protein loading, antibody concentration, etc., were controlled for each antibody and are detailed 
in Fig. 1C. Although the majority of antibodies tested were able to detect a band (or bands) between the 72 
and 55 kDa protein markers that correspond to the approximate size of endogenous IRF5 (~62 kDa), most anti-
bodies were unable to distinguish IRF5 expression differences between cell lines (Fig. 1D). Antibodies #33478 
(Abcam; ab33478) and #13496 (Cell Signaling; cs13496) detected similar, high IRF5 expression in all three cell 
lines indicating lack of specificity. Antibodies #124792 (Abcam; ab124792) and NB100-1092 (Novus Biologicals) 
detected a similar large, single band in THP1 cells but were unable to detect IRF5 in Ramos B cells; a faint band 
of appropriate size could be detected in lysates from Ramos B cells after longer exposures with ab124792 but not 
NB100-1092. While antibody #2932 (Abcam; ab2932) detected clean bands of appropriate size in all three cell 
lines, the levels of expression were incorrect showing Ramos B cells as the highest expressers of IRF5. Antibody 
SAB1403991 (Sigma) was the least specific as it detected multiple bands throughout the membrane and antibody 
#181533 (Abcam; ab181533) was the most specific since it cleanly detected expression differences between the 
cell lines. Ab181533 was the only antibody capable of detecting IRF5 expression differences between each cell line 
that correlated with transcript levels and detection with cs3257.

To further confirm antibody specificity, targeted siRNAs were used to knockdown endogenous IRF5 in Ramos 
B cells. qRT-PCR and immunoblot analysis with the validated cs3257 antibody were used to confirm IRF5 knock-
down (Fig. 1E and data not shown). Lysates from the same batch of nucleofected cells were used to generate 
multiple independent blots for comparison of antibody specificity. Similar to immunoblot data in panel D, anti-
bodies ab33478 and ab2932 were unable to detect differences in IRF5 expression after knockdown, and ab124792 
and NB100-1092 were unable to detect IRF5 in Ramos B cells at all. Interestingly, although multiple bands were 
detected with SAB1403991, one band of appropriate size disappeared after knockdown suggesting that the anti-
body may be able to recognize IRF5, albeit in a non-specific manner. Antibody cs13496 was also interesting as 
it detected IRF5 knockdown in Ramos B cells even though it was unable to distinguish expression differences 
between the three cell lines (Fig. 1D). However, the most specific antibody for IRF5 detection, before and after 
knockdown, was ab181533 (Fig. 1E). Ab181533 was the most consistent and specific in its ability to detect differ-
ing levels of endogenous IRF5 by immunoblot analysis.

We next evaluated the ability and efficiency of IRF5 antibodies to immunoprecipitate (IP) endogenous IRF5 
proteins from Ramos B cell lysates. Even though antibodies NB100-1092 and ab2932 were not able to recognize 
IRF5 by immunoblot analysis, we tested them for IP as the companies specifically recommended them for this 
method on their technical sheets. Cs3257 and clone 2E3-1A11 (WH0003663M1 or H00003663-M01) were also 
used for IP comparison as antibodies from clone 2E3-1A111 were the only ones previously available that could IP 
endogenous IRF5. Protein lysates were immunoprecipitated with the indicated antibodies, as detailed in Fig. 2A, 
and IP efficiency assessed by immunoblot analysis with H00003663-M01. Interestingly, cs3257 was unable to IP 
much IRF5 while WH0003663M1 (clone 2E3-1A11) could. Given that WH0003663M1 and H00003663-M01 
were both monoclonal, high background bands for heavy and light chain immunoglobulins were seen on the 
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blot, in addition to a band corresponding to IRF5 (Fig. 2B). Not surprising, ab33478 and ab2932 were unable 
to IP IRF5, while ab124792 immunoprecipitated similar levels as the previously available WH0003663M1, yet 
with less non-specific binding. Since NB100-1092 was recommended by the manufacturer for IP, we performed 
an antibody titration to detect IP efficiency and specificity. Somewhat surprising given the immunoblot data in 
Fig. 1D,E, NB100-1092 was able to precipitate large amounts of IRF5 with 2 μ g of antibody; however, a number 
of other proteins precipitated with IRF5 indicating a lack of specificity (Fig. 2C). Ab181553 was also tested, given 
its sensitivity and selectivity for IRF5 by WB, and while it was able to IP IRF5, additional non-specific bands 
were detected (Fig. 2D). Since ab124792 gave the least non-specific binding (Fig. 2B), this antibody was further 
optimized by titration and washing after IP. We found highly efficient and specific IP of IRF5 at 4 μ g antibody 
(Fig. 2E). To further confirm specificity, ab124792 was used for IP in Jurkat T cells and no binding was detected 
at the same concentration of protein lysate and antibody used for IP of Ramos B cell lysates (Fig. 2F). Of interest, 
Abcam specifically states on their product sheet that ab124792 is unsuitable for IP. Based on the current analysis, 
we found ab124792 to be a specific and efficient antibody for IP of human IRF5.

Next, to determine whether any of the antibodies were capable of detecting intracellular IRF5 by flow cytom-
etry analysis, as in Fig. 1, IRF5 expression was compared between THP1, Ramos, and Jurkat cells. Using the same 
antibody concentration, permeabilization protocol, and cell staining procedure (Fig. 3A), we found that antibod-
ies cs3257, ab124792, cs13496, and SAB1403991 were able to detect the expected IRF5 expression differences 

Figure 1. Comparative analysis of IRF5 protein expression between immortalized lymphoid cell lines by 
immunoblot. (A) qRT-PCR analysis of IRF5 transcript expression in immortalized lymphoid cell lines. Data 
is presented as relative expression after normalization to β -actin using the ∆ ∆ Ct method. (B) Immunoblot 
analysis of endogenous IRF5 protein expression in immortalized cell lines. IRF5 expression was detected  
with the previously validated Cell Signaling antibody #3257 that is no longer available. β -actin levels and 
apparent molecular weight standards are shown as loading controls and for size comparison, respectively.  
(C) Experimental details for the comparative analysis of α -IRF5 antibody specificity by immunoblot analysis. 
(D) Same as in (B)except lysates (T, THP-1; R, Ramos B cells; J, Jurkat T cells) were run on multiple independent 
blots for the analysis of antibody specificity; seven different commercially available α -IRF5 antibodies were 
evaluated. (E) Same as in (D) except antibodies were evaluated by IRF5 knockdown analysis. Ramos B cells were 
nucleofected with scrambled (Scr) or IRF5 (KD) siRNAs and lysates from same nucleofection run on multiple 
independent blots for comparative analysis. Arrows indicate detection of an appropriately sized band(s) 
corresponding to IRF5. Data (except in (C)) are representative of three independent experiments.
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between cell lines (Fig. 3B). Ab124792 was specifically recommended for flow cytometry on its technical sheet 
and it showed the largest difference between cell peaks (based on MFI values). While not used in the current 
study, ab124792 is now available in pre-conjugated forms (ab193245 or ab192983) that we have found to further 
enhance specificity for intracellular IRF5 detection by flow cytometry.

Given the importance of IRF5 as a potential biomarker for autoimmune disease and cancer, we evaluated the 
ability of antibodies to detect IRF5 by immunohistochemical (IHC) and immunofluorescence (IF) microscopy in 
human splenic tissue. Spleen was chosen for comparative analysis of antibody detection since previous data from 
Northern blot and qRT-PCR analysis of IRF5 transcript expression showed high levels of IRF5 in this organ1. 
Antibodies cs3257, ab124792 and ab181553 were chosen for testing on formalin-fixed paraffin-embedded (FFPE) 
spleen tissue as they provided positive detection in others assays (Figs 1–3). Antibody HPA046700 (Sigma) was 
also included in the analysis as it was shown to detect high levels of IRF5 in both red and white pulp of spleen 
by IHC from The Human Protein Atlas (http://www.proteinatlas.org/ENSG00000128604-IRF5/tissue/spleen). 
All four antibodies were tested by IHC and IF but only ab124792 and ab181553 worked for IF (Fig. 4 and data 
not shown). Antibody cs3257 was unable to detect IRF5 by IHC or IF as staining was equivalent to background 
levels detected with secondary antibody alone (Fig. 4B and data not shown). Ab124792 and ab181553 showed 
positive staining for IRF5, as compared to secondary alone, and the staining pattern was similar between the two 
antibodies. Both antibodies detected IRF5 in the red and white pulp, yet staining was distinctly higher in the 
red pulp. HPA046700 also showed positive staining; however, the pattern of staining was distinct from the two 
Abcam antibodies. Similar to that shown on the Human Protein Atlas website, high levels of IRF5 were detected 
in both red and white pulp of human spleen, with higher levels detected in the white pulp. White pulp is primarily 
made up of B and T cells. Given that IRF5 expression is extremely low in normal, healthy T cells, we performed 
co-staining with anti-CD3 antibodies to delineate antibody specificity. Data from IHC clearly show that ab124792 
stained positive for IRF5 (brown) in cells lacking CD3 co-stain (red). However, HPA046700 stained positive for 
IRF5 in CD3-positive T cells suggesting non-specific binding by this antibody. Further analysis of co-staining by 
IF confirmed that ab124792 and ab181553 show IRF5-positive staining in cells that lack CD3 co-stain (Fig. 4D). 
Together, these data support the use of ab124792 or ab181553 for the specific detection of human IRF5 in FFPE 
samples by IHC or IF.

Figure 2. Ability of α-IRF5 antibodies to immunoprecipitate endogenous IRF5 from Ramos B cells.  
(A) Experimental details for the comparative analysis of α -IRF5 antibody specificity by immunoprecipitation. 
(B–E) Lysates from Ramos B cells were immunoprecipitated with the indicated antibodies and IRF5 detected  
by immunoblot. In (C–E), the indicated antibodies were titrated for immunoprecipitation. (F) Same as  
(B) except lysates from Jurkat T cells were also immunoprecipitated to test antibody specificity. Arrows indicate 
detection of an appropriately sized band(s) corresponding to IRF5. Data are representative of three independent 
experiments.

http://www.proteinatlas.org/ENSG00000128604-IRF5/tissue/spleen
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Figure 3. Comparative analysis of IRF5 protein expression between immortalized lymphoid cell lines 
using flow cytometry. (A) Experimental details for the comparative analysis of α -IRF5 antibody specificity 
by flow cytometry. (B) Representative histogram plots from flow cytometry analysis of intracellular IRF5 
in immortalized cell lines using different α -IRF5 antibodies. Data are representative of three independent 
experiments. Ctrl-iso, matched isotype antibodies used as non-specific controls.

Figure 4. Comparative analysis of IRF5 protein expression in human spleen tissue by IHC and IF 
microscopy. (A) Experimental details for the comparative analysis of α -IRF5 antibody specificity by IHC and IF 
microscopy. (B) Representative core images from IHC analysis of human spleen tissue. IRF5-positive staining is 
brown, hematoxylin (blue) stains cell nuclei; 2nd alone, staining with secondary antibody only; RP, red pulp;  
WP, white pulp. (C) Same as (B) except tissue cores were double-stained with α -IRF5 antibodies (brown) and  
α -CD3 antibodies (red). (D) Representative images from IF analysis of α -IRF5 (red) and α -CD3 (green)  
co-staining in human spleen tissue. DAPI (blue) stains cell nuclei. Images were taken at 60X magnification.
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Last, we evaluated commercially available antibodies reported by the manufacturer to detect murine IRF5. For 
this study, spleen from wild-type (WT) and Irf5ko (KO) BALB/c mice was used to examine antibody specificity. 
Six antibodies were tested by immunoblot analysis and two showed highly specific detection of endogenous IRF5 
– ab181533 (Abcam) and cs4950 (Cell Signaling); apparent by the single band of correct size in the WT lane and 
not in the KO lane (Fig. 5A). Ab33478 (Abcam) also detected a band in WT cells that corresponded to the size 
of IRF5 and was lacking in KO cells, yet numerous other non-specific bands were detected as well. Antibodies 
PT10547-1-AP (Proteintech), IC8447P (R&D), and SC98651 (Santa Cruz) were unable to detect differences in 
IRF5 expression between WT and KO splenocytes. Antibodies were then evaluated for their use in flow cytome-
try using manufacturer’s recommended protocols for fixation, permeabilization and staining. Methods were fur-
ther optimized in an identical manner by increasing Triton X-100 concentration and incubation time to enhance 
permeabilization. Data in Fig. 5B was from permeabilization of cells with 0.5% Triton X-100 for 20 min, followed 
by washing with 0.1% Triton X-100. All un-conjugated antibodies were tested with Alexa Fluor (AF) 488 and 
647 secondary antibodies. Neither cs4950 nor PT105471AP were able to detect differential expression between 
WT and KO splenocytes. We also purchased two recently available pre-conjugated antibodies, PE-conjugated 
IC8447P (R&D; RDIC8447P-PE) and AF647-conjugated FAB8447R (Novus Biologicals; FAB8447R-AF647), for 
testing. Although a small shift between WT and KO cells was seen with each pre-conjugated antibody, MFI values 
were not substantially different between peaks (Fig. 5B). In our hands, only ab181553 was able to detect substan-
tial differences in IRF5 expression between WT and KO splenocytes; MFI for WT was > 2-fold higher than KO. 
Antibodies were then tested for specificity by IF and IHC. Similar to findings from flow cytometry analysis, only 
ab181553 was able to differentiate IRF5 staining between WT and KO mice; both IF and IHC showed similar 
specificity. Antibody cs4950 was unable to detect any signal over that seen with secondary antibody alone, while 
PT105471AP gave positive staining that was not distinct between WT and KO spleen. Thus, ab181553 was the 
most specific in detecting murine IRF5 cellular expression by all three methods tested.

Figure 5. Detection of murine IRF5 by immunoblot, flow cytometry and IHC/IF analysis. (A) Immunoblot 
analysis of endogenous IRF5 protein expression in primary splenocytes from Irf5+/+ (WT) and Irf5−/− (KO) 
mice. 25 μ g protein was separated by SDS-PAGE, as described in the Methods section. β -actin levels and 
apparent molecular weight standards are shown as loading controls and for size comparison, respectively. 
Arrows indicate detection of an appropriately sized band(s) corresponding to murine IRF5. (B) Representative 
histogram plots from flow cytometry analysis of intracellular IRF5 expression in splenocytes from Irf5+/+ (WT) 
and Irf5−/− (KO) mice. Ctrl, matched isotype antibodies used as non-specific controls. Data are representative of 
three independent experiments. (C) Representative images from IF (left panels) and IHC (right panels) analysis 
of IRF5 expression in spleen from Irf5+/+ (WT) and Irf5−/− (KO) mice. For IF, IRF5-positive staining is red; 
DAPI is blue. For IHC, IRF5-positive staining is brown; hematoxylin is blue; 2nd alone, staining with secondary 
antibody only.
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Discussion
Antibodies are among the most commonly used tools in the biological sciences to identify and isolate proteins of 
interest. Unfortunately, as documented in two seminal features in Nature last year40,41, commercial antibodies are 
“littering the field with false findings”41. The current study was an effort to validate commercial antibodies in a 
transparent manner with the inclusion of appropriate positive and negative controls for analysis. The underlying 
goal(s) of this study was to identify highly specific antibodies for the detection of human and murine IRF5, and 
to provide validated methods for testing and use of individual IRF5 antibodies to the scientific community. In the 
past 5 years, IRF5 has become a molecule of high interest given its important role(s) in regulating inflammation 
and immunity7,8,10,19,22,24, as well as recent new findings that implicate IRF5 in the regulation of neuropathic pain, 
obesity, myocardial infarction, allograft rejection, atherosclerosis, and metabolic dysfunction25–28,42. The body of 
research focused on IRF5 expression and function in disease pathogenesis continues to grow and therefore, like 
many other molecules of interest, will require the continual testing and validation of commercial reagents.

Not surprising to many scientists using antibodies in their research to detect and study molecules of interest, 
here we report that very few commercial antibodies developed for the detection of IRF5 were capable of detecting 
IRF5. To the contrary, many commonly used commercial antibodies were unable to accurately and/or specifically 
measure IRF5 protein expression. A cursory review of the literature indicates very few publications include val-
idated positive and negative controls for protein expression analysis by immunoblot, flow cytometry or micros-
copy. These types of controls, including molecular weight markers, cell type-specific markers, and knockdown 
analysis, are essential for the accurate analysis of antibody specificity. In the current study, we identified ab181553 
as the most specific antibody for detection of human IRF5 expression by immunoblot analysis (Fig. 1). For IP of 
human IRF5, NB100-1092, ab181553, and ab124792 were capable, yet ab124792 was the most specific for IRF5 
(Fig. 2C–F). A number of antibodies showed positive staining (a shift to the right from isotype control) for human 
IRF5 by flow cytometry analysis, however, only cs13496, SAB1403991 and ab124792 were able to differentiate 
IRF5 expression levels between cell lines (Fig. 3). While not shown in the current study, pre-conjugated forms of 
ab124792 are now available and better at detecting intracellular IRF5 expression differences. Clone 2E3-1A11 used 
to be the only antibody available for the detection of human IRF5 by IHC and IF microscopy [20,43]. We now 
have identified two more antibodies that appear to specifically detect human IRF5 in FFPE tissues – ab124792 and 
ab181553 (Fig. 4). Further testing of HPA046700 is warranted given its current use in The Human Protein Atlas 
and our finding of IRF5 positive staining in splenic CD3-positive T cells with this antibody (Fig. 4C). The Human 
Protein Atlas is a public-domain resource used by many scientists for analysis of protein expression differences 
between normal and diseased cells or tissues. Last, we identified a single antibody that specifically recognizes 
murine IRF5 by immunoblot analysis, flow cytometry, and IHC/IF – ab181553. As shown in Figs 1 and 4, this 
antibody was also capable of specifically detecting human IRF5 by immunoblot analysis and IHC/IF.

A cursory review of immunogens used to generate each antibody may provide insight into the development of 
highly specific 2nd generation α -IRF5 antibodies. For instance, the immunogens used to generate the previously 
validated rabbit polyclonal cs3257 and mouse monoclonal 2E3-1A11 were a synthetic peptide corresponding 
to carboxyl terminus residues of human IRF5 (cs3257) and full-length recombinant human IRF5 (2E3-1A11), 
respectively. Antibodies ab181553 and ab124792 are both rabbit monoclonal antibodies; ab181553 was generated 
from a recombinant fragment of amino terminal human IRF5 (amino acids 1–200) while the fragment used to 
generate ab124792 is proprietary. The immunogen for HPA046700 was a short region in the amino terminus of 
human IRF5 (amino acids 85–134). The amino terminus of IRF family members share significant homology as 
this is a well-conserved DNA binding domain. Conversely, the carboxyl terminus of IRFs is considered distinct 
from each other thus providing specificity of function43. While results reported herein identify α -IRF5 antibodies 
that specifically detect IRF5 in multiple assays (Table 1), caution should be used in the evaluation and interpreta-
tion of IRF5 expression analysis by other antibodies.

Methods
Cell lines and lysates. THP-1 monocytic/macrophages (TIB-202), Ramos B cells (CRL-1596), and Jurkat 
T cells (TIB-152) were newly purchased from ATCC for this study and grown in RPMI-1640 with 10% FBS. Cell 
lysates of THP-1 (sc-2238), Ramos B cells (sc-2216), and Jurkat T cells (sc-2204) were purchased from Santa Cruz 
Biotechnology.

Mice. Irf5−/− mice on a C57Bl/6 background were obtained from T. Taniguchi (University of Tokyo, Tokyo, 
Japan) and T. Mak (University of Toronto, Toronto, Ontario, Canada)8. Wild-type (WT) Balb/c mice were pur-
chased from The Jackson Laboratory (Bar Harbor, ME). Irf5−/− mice on a C57Bl/6 background were back-crossed 
onto the Balb/c background to obtain a generation 10 (F10) cohort of Irf5+/+ and Irf5−/− Balb/c littermates, by 
standard breeding techniques. Mice were genotyped for Irf5 and the dedicator of cytokinesis 2 (Dock2) muta-
tion as previously described44,45. All Irf5+/+ and Irf5−/− littermates used in this study lacked the Dock2 muta-
tion45. Littermate Irf5+/+ mice or WT Balb/c were used as controls. All animal experiments were conducted at the 
Feinstein Institute for Medical Research (FIMR), Northwell Health, following the guidelines of the Institutional 
Animal Ethics Committee. Animal ethics was approved by the FIMR Animal Ethics Committee and the experi-
ments were carried out in accordance with the approved guidelines.

Real-time quantitative polymerase chain reaction (qRT-PCR) analysis. Primers for IRF5 amplifica-
tion and thermocycler conditions were previously described32. All reactions were performed in the QuantStudio 
3 Real-Time PCR System (ThermoFisher Scientific). PCR analyses were done in duplicate, with each set of assays 
repeated three times. To minimize the effects of unequal quantities of starting RNA and to eliminate potential 
sources of inconsistency, relative expression levels of each gene was normalized to β -actin using the ∆∆Ct method.
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Immunoprecipitation (IP) and immunoblotting. For IP, Ramos B cells were lysed as previously 
described in 300 μ L of RIPA lysis buffer (10 nM Tris-HCL pH 8.0, 1 mM EDTA, 1% Triton X-100, 0.1% Sodium 
Deoxycholate, 0.1% SDS, and 140 mM NaCl)46,47. Lysates (250 μ g) were pre-cleared with 75 μ L of a 50% aga-
rose protein A/G bead slurry for 1 h before IP with α -IRF5 antibodies (Abcam: #33478, #2932, #124792; Cell 
Signaling: #3257; Sigma-Aldrich: #WH0003663M1; Novus Biologicals: #NB100-1092, #H00003663-M01). IP 
was performed overnight at 4 °C on pre-cleared lysates using 4 μ g of each α -IRF5 antibody or IgG control. IP 
samples were washed three times in chilled lysis buffer for 15 min. 50 μ L of SDS loading buffer was added to 
final bead pellet, pellet was boiled, and proteins separated by SDS-PAGE (NuPAGE®  Tris-Acetate 8% gel, Life 
Technologies) followed by transfer onto PVDF. Immunoprecipitated IRF5 was detected by immunoblotting 
with #H00003663-M01 (Novus Biologicals). For immunoblot analysis, protein lysates (25 μ g) were separated by 
SDS-PAGE (NuPAGE®  Tris-Acetate gradient gels 3–8% or 4–12%, Life Technologies) and transferred onto 0.45 μ 
m nitrocellulose membranes (Bio-Rad Laboratories). Membranes were blocked in TBS/0.05% Tween 20 contain-
ing 5% BSA for 1 h and incubated overnight at 4 °C with α -IRF5 antibodies (Abcam: #33478, #2932, #124792, 
#181553; Cell Signaling: #3257, #13496, #4950; Sigma-Aldrich: #SAB1403991; Novus Biologicals: #NB100-1092; 
Proteintech Group Inc.: #10547-1-AP; R&D Systems: #IC8447P; Santa Cruz: #sc-98651) followed by horse rad-
ish peroxidase conjugated secondary antibodies (Cell Signaling: α -rabbit #7074S, α -mouse #7076S; Santa Cruz: 
donkey α -goat #sc-2020). Membranes were incubated with Clarity™  ECL Western Blotting Substrate (Bio-Rad 
Laboratories) and chemiluminescence detected with a ChemiDoc™  MP Imaging System (Bio-Rad Laboratories). 
The PageRuler™  Plus Prestained Protein Ladder (ThermoFisher Scientific) was used for size reference.

siRNA nucleofection. X 106 Ramos B cells were suspended in 300 μ L Amaxa buffer SG (246 μ L SG 
buffer +  54 μ L Supplement 1, Lonza: #V4XC-3024). 100 μ L of resuspended cells was added to three separate 
Amaxa cuvettes. 0.5 μ L of either ddH2O (Mock), 100 μ M Scrambled siRNA (Scr) (GE Dharmacon Catalog#: 
D-001810-10-05), or 100 μ M IRF5 targeting siRNA (IRF5KD) (GE Dharmacon Catalog#: L-011706-00-0010) was 
added to each cuvette. Cells were then nucleofected on the Amaxa 4D Nucleofector using program CA-137. After 
nucleofection, cells were immediately added to 1 mL of RPMI-1640 (+ 10% FBS, 1x Glutamine, 1X Non-essential 
Amino Acids), cultured for 24 h, and then pelleted and re-nucleofected with siRNA as before. Cells were then 
lysed 24 h after the second nucleofection for immunoblot analysis.

Flow cytometry. For human cell lines, 2 ×  106 cells were fixed overnight at 4 °C in 2% formaldehyde, 
washed, and permeabilized in 0.1% Triton X-100 as previously described33,43,46,48. Fixed cells were blocked with 
3% BSA and incubated with α -IRF5 antibodies (Abcam: #33478, #2932, #124792, #181553; Cell Signaling: 

Company Catalogue # Clonality
Species 

reactivity

Human Murine

WB IP Flow IHC IF WB Flow IHC IF

Abcam

33478 mouse mono H/M − − + /− + /− 

2932 goat poly H − + /− − 

124792 rabbit mono H + /− + + + + + + + 

181553 rabbit mono H/M + + + + /− + + + + + + + + + + + + 

Cell Signaling

3257 rabbit poly H + + + /− + + − 

13496 rabbit mono H − + 

4950 rabbit poly M + + − − − 

Novus Biologicals

NB100-1092 goat poly H + /− + − 

H00003663-M01 
(clone 2E3-1A11) mouse mono H + + + 

FAB8447R-AF647 rat mono M + /− 

Sigma-Aldrich

WH0003663M1 mouse mono H + + 

SAB1403991 mouse mono H − + 

HPA046700 rabbit poly H NS

Proteintech Inc

10547-1-AP rabbit poly H/M − − − − 

R&D Systems

IC8447P rat mono M − + 

Santa Cruz

sc-98651 rabbit poly M − 

Table 1.  IRF5 antibody details. Abbreviations: Western blot, WB; immunoprecipitation, IP; Flow, flow 
cytometry; immunohistochemistry, IHC; immunofluorescence, IF; Human, H; mouse, M. + + , antibody 
worked very well and was specific; + , antibody worked; + /− , antibody was able to detect IRF5 but not specific; 
NS, signal was detected but not specific for IRF5.
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#3257, #13496; Sigma-Aldrich: #SAB1403991; Novus Biologicals: #NB100-1092), according to manufacturer’s 
recommendations, for 1 h at room temperature. Fluorochrome-conjugated secondary antibodies (Invitrogen: 
Alexa Fluor (AF) 488-α -rabbit #A-11034, AF 488-α -mouse #A-11029) were used for detection on a BD 
LSRFortessa (BD Biosciences). For murine splenocytes, 1 ×  106 cells were fixed and permeabilized following 
manufacturer’s recommended protocols for staining with α -IRF5 antibodies (Abcam: #181553; Cell Signaling: 
#cs4950; Proteintech: #10547-1-AP; R&D Systems: #IC8447P-PE; Sigma-Aldrich: #FAB8447R-AF647). 
Protocols were further optimized by fixation in formaldehyde, increasing the concentration of Triton X-100 
from 0.1 to 0.5% for permeabilization, washing with Triton X-100, and blocking with TruStain fcX™  (BioLegend 
#101320) before addition of primary antibodies. The final recommended protocol for detection of intracellular 
murine IRF5 staining is as follows: fixation in 2% formaldehyde for 15 min at 4 °C, permeabilization with 0.5% 
Triton X-100 for 20 min at 4 °C, wash with 0.1% Triton X-100, resuspend in 0.1% Triton X-100 for overnight 
incubation at 4 °C, the following morning resuspend cells in 100 μ l of 0.1% Triton X-100 with 2 μ l TruStain fcX™  
per sample for 20 min at room temperature, followed by addition of manufacturer’s recommended primary 
antibody concentration, and incubation for 40 min at 4 °C. After washing twice with 0.1% Triton X-100, in the 
case of unconjugated primary antibodies, cells were labeled with fluorochrome-conjugated secondary antibod-
ies (Invitrogen: #A-10931 APC-anti-rabbit, #A-11034 AF 488-anti-rabbit) and fluorescence detected on a BD 
LSRFortessa (BD Biosciences).

Immunohistochemical (IHC) and immunofluorescence (IF) microscopy. Purchased human spleen 
arrays (US Biomax Inc: #sp241t, #sp481) were deparaffinized according to manufacturer’s instructions. Antigen 
retrieval was done in Antigen Unmasking Solution (Vector Laboratories: #H-3301) by heating to 95–100 °C 
for 30 min in a steamer. For IHC, arrays were sequentially blocked with BloXall (Vector Laboratories: #SP-100) 
for 10 min at room temperature, Avidin/Biotin Blocking Kit (Vector Laboratories: #SP-2001), and 5% normal 
serum in 0.1% Triton X-100. Slides were incubated overnight at 4 °C with 1:100 dilution of α -IRF5 antibod-
ies (Cell Signaling: #3257; Abcam: #124792, #181553; Sigma-Aldrich: #HPA046700) in serum blocking buffer. 
Biotin-conjugated secondary antibodies were then applied followed by incubation with avidin-biotin complex 
(Vector Laboratories: VECTASTAIN Elite ABC Kit #PK-6101). IRF5 staining was visualized with ImmPACT™  
DAB Substrate Kit (Vector Laboratories: #SK-4105) and counter-stained with Hematoxylin20. For detection of 
IRF5/CD3 co-staining, after detection of DAB, slides were washed and incubated with 1:100 α -CD3 antibodies 
(Bio-Rad: #MCA1477T) at 4 °C overnight. CD3 staining was visualized with the VECTASTAIN ABC-AP Kit 
(Vector Laboratories: #AK-5004) and ImmPACT™  Vector®  Red (Vector Laboratories: #SK-5105). For IF, slides 
were permeabilized with 0.2% Triton X-100 for 20 min at room temperature, washed, and treated with Image-iT™  
FX Signal Enhancer (ThermoFisher Scientific: #I36933) for 30 min. Slides were blocked with 4% BSA for 1 h and 
incubated with a dilution of 1:150 α -IRF5 antibodies and α -CD3 antibodies overnight at 4 °C. After washing, 
slides were stained with a dilution of 1:1000 secondary antibodies (Jackson ImmunoResearch: AF 488-anti-rat 
#712-545-153, Cy3-anti-rabbit #711-165-152) for 1 h followed by washing and mounting with VECTASHIELD®  
HardSet Mounting Media with DAPI (Vector Laboratories: #H-1500). Images were captured on a Zeiss Axiovert 
200 M System (Zeiss) at the indicated magnifications. Analysis of murine spleen by IHC and IF was performed 
in a similar manner with α -IRF5 antibodies (Abcam: #ab181553; Cell Signaling: #4950; Proteintech Group Inc.: 
#10547-1-AP).
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