476 research outputs found

    Particle sizing in rocket motor studies utilizing hologram image processing

    Get PDF
    A technique of obtaining particle size information from holograms of combustion products is described. The holograms are obtained with a pulsed ruby laser through windows in a combustion chamber. The reconstruction is done with a krypton laser with the real image being viewed through a microscope. The particle size information is measured with a Quantimet 720 image processing system which can discriminate various features and perform measurements of the portions of interest in the image. Various problems that arise in the technique are discussed, especially those that are a consequence of the speckle due to the diffuse illumination used in the recording process

    Combustion/particle sizing experiments at the Naval Postgraduate School Combustion Research Laboratory

    Get PDF
    Particle behavior in combustion processes is an active research area at NPS. Currently, four research efforts are being conducted: (1) There is a long standing need to better understand the soot production and combustion processes in gas turbine combustors, both from a concern for improved engine life and to minimize exhaust particulates. Soot emissions are strongly effected by fuel composition and additives; (2) A more recent need for particle sizing/behavior measurements is in the combustor of a solid fuel ramjet which uses a metallized fuel. High speed motion pictures are being used to study rather large burning particles; (3) In solid propellant rocket motors, metals are used to improve specific impulse and/or to provide damping for combustion pressure oscillations. Particle sizing experiments are being conducted using diode arrays to measure the light intensity as a function of scattering angle; (4) Once a good quality hologram is attained, a need exists for obtaining the particle distributions from hologram in a short period of time. A Quantimet 720 Image Analyzer is being used to reconstruct images

    Uncovering the Active Galactic Nuclei in Low-Ionization Nuclear Emission-Line Regions with Spitzer

    Full text link
    The impact of active galactic nuclei on low-ionization nuclear emission-line regions (LINERs) remains a vigorous field of study. We present preliminary results from a study of the mid-infrared atomic emission lines of LINERs with the Spitzer Space Telescope. We assess the ubiquity and properties of AGN in LINERs using this data. We discuss what powers the mid-infrared emission lines and conclude that the answer depends unsurprisingly on the emission line ionization state and, more interestingly, on the infrared luminosity.Comment: To appear in ASP Vol. 373, The Central Engine of Active Galactic Nuclei, ed. Luis C. Ho and Jian-Min Wang; 4 pages, 2 figure

    Painful Past in the Service of Israeli Jewish-Arab Dialogue: The Work of the Center for Humanistic Education at the Ghetto Fighters House in Israel

    Get PDF
    The Centre for Humanistic Education (CHE) within the museum of Ghetto Fighters’ House (GFH) in Israel, engages high-school students and teachers from the Arab and Jewish sectors in an examination of connections between the Holocaust; personal and social morals; and implications for present Israeli society

    Neutral Gas Outflows and Inflows in Infrared-Faint Seyfert Galaxies

    Full text link
    Previous studies of the Na I D interstellar absorption line doublet have shown that galactic winds occur in most galaxies with high infrared luminosities. However, in infrared-bright composite systems where a starburst coexists with an active galactic nucleus (AGN), it is unclear whether the starburst, the AGN, or both are driving the outflows. The present paper describes the results from a search for outflows in 35 infrared-faint Seyferts with 10^9.9 < L_IR/L_sun < 10^11, or, equivalently, star formation rates (SFR) of ~0.4 -- 9 solar masses per year, to attempt to isolate the source of the outflow. We find that the outflow detection rates for the infrared-faint Seyfert 1s (6%) and Seyfert 2s (18%) are lower than previously reported for infrared-luminous Seyfert 1s (50%) and Seyfert 2s (45%). The outflow kinematics of infrared-faint and infrared-bright Seyfert 2 galaxies resemble those of starburst galaxies, while the outflow velocities in Seyfert 1 galaxies are significantly larger. Taken together, these results suggest that the AGN does not play a significant role in driving the outflows in most infrared-faint and infrared-bright systems, except the high-velocity outflows seen in Seyfert 1 galaxies. Another striking result of this study is the high rate of detection of inflows in infrared-faint galaxies (39% of Seyfert 1s, 35% of Seyfert 2s), significantly larger than in infrared-luminous Seyferts (15%). This inflow may be contributing to the feeding of the AGN in these galaxies, and potentially provides more than enough material to power the observed nuclear activity over typical AGN lifetimes.Comment: 17 pages, 12 figures, published in ApJ (article updated 12/30/09

    The BeppoSAX X-ray view of reflection-dominated Seyfert Galaxies

    Get PDF
    We present new results from BeppoSAX observations of reflection-dominated Seyfert galaxies, and namely: 1) the Compton-thick Seyfert 2s NGC1068 and Circinus Galaxy; 2) the Seyfert 1 NGC4051, whose nucleus was observed on May 1998 to have switched off, leaving only a residual reflection component as an echo of its past activity. Our main focus in this paper is on the soft X-ray continuum properties and on the X-ray line spectroscopy.Comment: 6 Latex pages, 5 figures, Accepted for publication in Advances in Space Research, Proceedings of 32nd Sci. Ass. of COSPA

    Model theory of operator algebras III: Elementary equivalence and II_1 factors

    Full text link
    We use continuous model theory to obtain several results concerning isomorphisms and embeddings between II_1 factors and their ultrapowers. Among other things, we show that for any II_1 factor M, there are continuum many nonisomorphic separable II_1 factors that have an ultrapower isomorphic to an ultrapower of M. We also give a poor man's resolution of the Connes Embedding Problem: there exists a separable II_1 factor such that all II_1 factors embed into one of its ultrapowers.Comment: 16 page

    Self-Consistent Models of the AGN and Black Hole Populations: Duty Cycles, Accretion Rates, and the Mean Radiative Efficiency

    Full text link
    We construct evolutionary models of the populations of AGN and supermassive black holes, in which the black hole mass function grows at the rate implied by the observed luminosity function, given assumptions about the radiative efficiency and the Eddington ratio. We draw on a variety of recent X-ray and optical measurements to estimate the bolometric AGN luminosity function and compare to X-ray background data and the independent estimate of Hopkins et al. (2007) to assess remaining systematic uncertainties. The integrated AGN emissivity closely tracks the cosmic star formation history, suggesting that star formation and black hole growth are closely linked at all redshifts. Observational uncertainties in the local black hole mass function remain substantial, with estimates of the integrated black hole mass density \rho_BH spanning the range 3-5.5x10^5 Msun/Mpc^3. We find good agreement with estimates of the local mass function for a reference model where all active black holes have efficiency \eps=0.065 and L_bol/L_Edd~0.4. In this model, the duty cycle of 10^9 Msun black holes declines from 0.07 at z=3 to 0.004 at z=1 and 0.0001 at z=0. The decline is shallower for less massive black holes, a signature of "downsizing" evolution in which more massive black holes build their mass earlier. The predicted duty cycles and AGN clustering bias in this model are in reasonable accord with observational estimates. If the typical Eddington ratio declines at z<2, then the "downsizing" of black hole growth is less pronounced. Matching the integrated AGN emissivity to the local black hole mass density implies \eps=0.075 (\rho_BH/4.5x10^5 Msun/Mpc^3)^{-1} for our standard luminosity function estimate (25% higher for Hopkins et al.'s), lower than the values \eps=0.16-0.20 predicted by MHD simulations of disk accretion.Comment: replaced with version accepted by ApJ. Minor revision

    Eddington-limited accretion and the black hole mass function at redshift 6

    Full text link
    We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z=6.44. We also use near-IR spectroscopy of nine CFHQS quasars at z~6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey (SDSS) quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between MgII FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z=6. Our black hole mass function is ~10^4 times lower than at z=0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high-redshift than is observed at low-redshift and/or a low quasar duty cycle at z=6. In comparison, the global stellar mass function is only ~10^2 times lower at z=6 than at z=0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass - stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4<z<6 from the local relation if one just studies the most massive black holes.Comment: 16 pages, 10 figures, AJ in pres
    corecore