140 research outputs found

    Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia

    Get PDF
    Objective: Type 2 diabetes confers a greater excess risk of cardiovascular disease in women than in men. Diabetes is also a risk factor for dementia, but whether the association is similar in women and men remains unknown. We performed a meta-analysis of unpublished data to estimate the sex-specific relationship between women and men with diabetes with incident dementia. Research design and methods: A systematic search identified studies published prior to November 2014 that had reported on the prospective association between diabetes and dementia. Study authors contributed unpublished sex-specific relative risks (RRs) and 95% CIs on the association between diabetes and all dementia and its subtypes. Sex-specific RRs and the women-to-men ratio of RRs (RRRs) were pooled using random-effects meta-analyses. Results: Study-level data from 14 studies, 2,310,330 individuals, and 102,174 dementia case patients were included. In multiple-adjusted analyses, diabetes was associated with a 60% increased risk of any dementia in both sexes (women: pooled RR 1.62 [95% CI 1.45-1.80]; men: pooled RR 1.58 [95% CI 1.38-1.81]). The diabetes-associated RRs for vascular dementia were 2.34 (95% CI 1.86-2.94) in women and 1.73 (95% CI 1.61-1.85) in men, and for nonvascular dementia, the RRs were 1.53 (95% CI 1.35-1.73) in women and 1.49 (95% CI 1.31-1.69) in men. Overall, women with diabetes had a 19% greater risk for the development of vascular dementia than men (multiple-adjusted RRR 1.19 [95% CI 1.08-1.30]; P \u3c 0.001). Conclusions: Individuals with type 2 diabetes are at ∌60% greater risk for the development of dementia compared with those without diabetes. For vascular dementia, but not for nonvascular dementia, the additional risk is greater in women

    Blood Levels of Macrophage Migration Inhibitory Factor after Successful Resuscitation from Cardiac Arrest

    Get PDF
    Introduction: Ischemia-reperfusion injury following cardiopulmonary resuscitation (CPR) is associated with a systemic inflammatory response, resulting in post-resuscitation disease. In the present study we investigated the response of the pleiotropic inflammatory cytokine macrophage migration inhibitory factor (MIF) to CPR in patients admitted to the hospital after out-of-hospital cardiac arrest (OHCA). To describe the magnitude of MIF release, we compared the blood levels from CPR patients with those obtained in healthy volunteers and with an aged- and gender-matched group of patient

    Association of anthropometry and weight change with risk of dementia and its major subtypes : A meta-analysis consisting 2.8 million adults with 57 294 cases of dementia

    Get PDF
    Uncertainty exists regarding the relation of body size and weight change with dementia risk. As populations continue to age and the global obesity epidemic shows no sign of waning, reliable quantification of such associations is important. We examined the relationship of body mass index, waist circumference, and annual percent weight change with risk of dementia and its subtypes by pooling data from 19 prospective cohort studies and four clinical trials using meta-analysis. Compared with body mass index-defined lower-normal weight (18.5-22.4 kg/m(2)), the risk of all-cause dementia was higher among underweight individuals but lower among those with upper-normal (22.5-24.9 kg/m(2)) levels. Obesity was associated with higher risk in vascular dementia. Similarly, relative to the lowest fifth of waist circumference, those in the highest fifth had nonsignificant higher vascular dementia risk. Weight loss was associated with higher all-cause dementia risk relative to weight maintenance. Weight gain was weakly associated with higher vascular dementia risk. The relationship between body size, weight change, and dementia is complex and exhibits non-linear associations depending on dementia subtype under scrutiny. Weight loss was associated with an elevated risk most likely due to reverse causality and/or pathophysiological changes in the brain, although the latter remains speculative.Peer reviewe

    Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume

    Get PDF
    The volume of the lateral ventricles (LV) increases with age and their abnormal enlargement is a key feature of several neurological and psychiatric diseases. Although lateral ventricular volume is heritable, a comprehensive investigation of its genetic determinants is lacking. In this meta-analysis of genome-wide association studies of 23,533 healthy middle-aged to elderly individuals from 26 population-based cohorts, we identify 7 genetic loci associated with LV volume. These loci map to chromosomes 3q28, 7p22.3, 10p12.31, 11q23.1, 12q23.3, 16q24.2, and 22q13.1 and implicate pathways related to tau pathology, S1P signaling, and cytoskeleton organization. We also report a significant genetic overlap between the thalamus and LV volumes (ρgenetic = -0.59, p-value = 3.14 × 10-6), suggesting that these brain structures may share a common biology. These genetic associations of LV volume provide insights into brain morphology

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.Peer reviewe

    Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men:A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia

    Get PDF
    OBJECTIVE: Type 2 diabetes confers a greater excess risk of cardiovascular disease in women than in men. Diabetes is also a risk factor for dementia, but whether the association is similar in women and men remains unknown. We performed a meta-analysis of unpublished data to estimate the sex-specific relationship between women and men with diabetes with incident dementia. RESEARCH DESIGN AND METHODS: A systematic search identified studies published prior to November 2014 that had reported on the prospective association between diabetes and dementia. Study authors contributed unpublished sex-specific relative risks (RRs) and 95% CIs on the association between diabetes and all dementia and its subtypes. Sex-specific RRs and the women-to-men ratio of RRs (RRRs) were pooled using random-effects meta-analyses. RESULTS: Study-level data from 14 studies, 2,310,330 individuals, and 102,174 dementia case patients were included. In multiple-adjusted analyses, diabetes was associated with a 60% increased risk of any dementia in both sexes (women: pooled RR 1.62 [95% CI 1.45-1.80]; men: pooled RR 1.58 [95% CI 1.38-1.81]). The diabetes-associated RRs for vascular dementia were 2.34 (95% CI 1.86-2.94) in women and 1.73 (95% CI 1.61-1.85) in men, and for nonvascular dementia the RRs were 1.53 (95% CI 1.35-1.73) in women and 1.49 (95% CI 1.31-1.69) in men. Overall, women with diabetes had a 19% greater risk for the development of vascular dementia than men (multiple-adjusted RRR 1.19 [95% CI 1.08-1.30]; P < 0.001). CONCLUSIONS: Individuals with type 2 diabetes are at ~60% greater risk for the development of dementia compared with those without diabetes. For vascular dementia, but not for nonvascular dementia, the additional risk is greater in women

    Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease

    Get PDF
    Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.Etude de cohorte sur la santé des étudiantsStopping cognitive decline and dementia by fighting covert cerebral small vessel diseaseStudy on Environmental and GenomeWide predictors of early structural brain Alterations in Young student

    Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies

    Get PDF
    BACKGROUND: Genetic determinants of stroke, the leading neurological cause of death and disability, are poorly understood and have seldom been explored in the general population. Our aim was to identify additional loci for stroke by doing a meta-analysis of genome-wide association studies. METHODS: For the discovery sample, we did a genome-wide analysis of common genetic variants associated with incident stroke risk in 18 population-based cohorts comprising 84 961 participants, of whom 4348 had stroke. Stroke diagnosis was ascertained and validated by the study investigators. Mean age at stroke ranged from 45·8 years to 76·4 years, and data collection in the studies took place between 1948 and 2013. We did validation analyses for variants yielding a significant association (at p<5 × 10(-6)) with all-stroke, ischaemic stroke, cardioembolic ischaemic stroke, or non-cardioembolic ischaemic stroke in the largest available cross-sectional studies (70 804 participants, of whom 19 816 had stroke). Summary-level results of discovery and follow-up stages were combined using inverse-variance weighted fixed-effects meta-analysis, and in-silico lookups were done in stroke subtypes. For genome-wide significant findings (at p<5 × 10(-8)), we explored associations with additional cerebrovascular phenotypes and did functional experiments using conditional (inducible) deletion of the probable causal gene in mice. We also studied the expression of orthologs of this probable causal gene and its effects on cerebral vasculature in zebrafish mutants. FINDINGS: We replicated seven of eight known loci associated with risk for ischaemic stroke, and identified a novel locus at chromosome 6p25 (rs12204590, near FOXF2) associated with risk of all-stroke (odds ratio [OR] 1·08, 95% CI 1·05-1·12, p=1·48 × 10(-8); minor allele frequency 21%). The rs12204590 stroke risk allele was also associated with increased MRI-defined burden of white matter hyperintensity-a marker of cerebral small vessel disease-in stroke-free adults (n=21 079; p=0·0025). Consistently, young patients (aged 2-32 years) with segmental deletions of FOXF2 showed an extensive burden of white matter hyperintensity. Deletion of Foxf2 in adult mice resulted in cerebral infarction, reactive gliosis, and microhaemorrhage. The orthologs of FOXF2 in zebrafish (foxf2b and foxf2a) are expressed in brain pericytes and mutant foxf2b(-/-) cerebral vessels show decreased smooth muscle cell and pericyte coverage. INTERPRETATION: We identified common variants near FOXF2 that are associated with increased stroke susceptibility. Epidemiological and experimental data suggest that FOXF2 mediates this association, potentially via differentiation defects of cerebral vascular mural cells. Further expression studies in appropriate human tissues, and further functional experiments with long follow-up periods are needed to fully understand the underlying mechanisms

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe
    • 

    corecore