38 research outputs found

    Fault growth and acoustic emissions in confined granite

    Get PDF
    The failure process in a brittle granite was studied by using acoustic emission techniques to obtain three dimensional locations of the microfracturing events. During a creep experiment the nucleation of faulting coincided with the onset of tertiary creep, but the development of the fault could not be followed because the failure occurred catastrophically. A technique has been developed that enables the failure process to be stabilized by controlling the axial stress to maintain a constant acoustic emission rate. As a result the post-failure stress-strain curve has been followed quasi-statically, extending to hours the fault growth process that normally would occur violently in a fraction of a second. The results from the rate-controlled experiments show that the fault plane nucleated at a point on the sample surface after the stress-strain curve reached its peak. Before nucleation, the microcrack growth was distributed throughout the sample. The fault plane then grew outward from the nucleation site and was accompanied by a gradual drop in stress. Acoustic emission locations showed that the fault propagated as a fracture front (process zone) with dimensions of 1 to 3 cm. As the fracture front passed by a given fixed point on the fault plane, the subsequent acoustic emission would drop. When growth was allowed to progress until the fault bisected the sample, the stress dropped to the frictional strength. These observations are in accord with the behavior predicted by Rudnicki and Rice's bifurcation analysis but conflict with experiments used to infer that shear localization would occur in brittle rock while the material is still hardening

    Rupture by damage accumulation in rocks

    Get PDF
    The deformation of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage and its spatial localization lead to the creation of a macroscale discontinuity, so-called "fault" in geological terms, and to the failure of the material, i.e. a dramatic decrease of the mechanical properties as strength and modulus. The damage process can be studied both statically by direct observation of thin sections and dynamically by recording acoustic waves emitted by crack propagation (acoustic emission). Here we first review such observations concerning geological objects over scales ranging from the laboratory sample scale (dm) to seismically active faults (km), including cliffs and rock masses (Dm, hm). These observations reveal complex patterns in both space (fractal properties of damage structures as roughness and gouge), time (clustering, particular trends when the failure approaches) and energy domains (power-law distributions of energy release bursts). We use a numerical model based on progressive damage within an elastic interaction framework which allows us to simulate these observations. This study shows that the failure in rocks can be the result of damage accumulation

    Comparison of air displacement plethysmography to hydrostatic weighing for estimating total body density in children

    Get PDF
    BACKGROUND: The purpose of this study was to examine the accuracy of total body density and percent body fat (% fat) using air displacement plethysmography (ADP) and hydrostatic weighing (HW) in children. METHODS: Sixty-six male and female subjects (40 males: 12.4 ± 1.3 yrs, 47.4 ± 14.8 kg, 155.4 ± 11.9 cm, 19.3 ± 4.1 kg/m(2); 26 females: 12.0 ± 1.9 yrs, 41.4 ± 7.7 kg, 152.1 ± 8.9 cm, 17.7 ± 1.7 kg/m(2)) were tested using ADP and HW with ADP always preceding HW. Accuracy, precision, and bias were examined in ADP with HW serving as the criterion method. Lohman's equations that are child specific for age and gender were used to convert body density to % fat. Regression analysis determined the accuracy of ADP and potential bias between ADP and HW using Bland-Altman analysis. RESULTS: For the entire group (Y = 0.835x + 0.171, R(2 )= 0.84, SEE = 0.007 g/cm(3)) and for the males (Y = 0.837x + 0.174, R(2 )= 0.90, SEE = 0.006 g/cm(3)) the regression between total body density by HW and by ADP significantly deviated from the line of identity. However in females, the regression between total body density by HW and ADP did not significantly deviate from the line of identity (Y = 0.750x + 0.258, R(2 )= 0.55, SEE = 0.008 g/cm(3)). The regression between % fat by HW and ADP for the group (Y = 0.84x + 3.81, R(2 )= 0.83, SEE = 3.35 % fat) and for the males (Y = 0.84x + 3.25, R(2 )= 0.90, SEE = 3.00 % fat) significantly deviated from the line of identity. However, in females the regression between % fat by HW and ADP did not significantly deviate from the line of identity (Y = 0.81x + 5.17, R(2 )= 0.56, SEE = 3.80 % fat). Bland-Altman analysis revealed no bias between HW total body density and ADP total body density for the entire group (R = 0.-22; P = 0.08) or for females (R = 0.02; P = 0.92), however bias existed in males (R = -0.37; P ≤ 0.05). Bland-Altman analysis revealed no bias between HW and ADP % fat for the entire group (R = 0.21; P = 0.10) or in females (R = 0.10; P = 0.57), however bias was indicated for males by a significant correlation (R = 0.36; P ≤ 0.05), with ADP underestimating % fat at lower fat values and overestimating at the higher % fat values. CONCLUSION: A significant difference in total body density and % fat was observed between ADP and HW in children 10–15 years old with a potential gender difference being detected. Upon further investigation it was revealed that the study was inadequately powered, thus we recommend that larger studies that are appropriately powered be conducted to better understand this potential gender difference

    Validity of new child-specific thoracic gas volume prediction equations for air-displacement plethysmography

    Get PDF
    BACKGROUND: To determine the validity of the recently developed child-specific thoracic gas volume (TGV) prediction equations for use in air-displacement plethysmography (ADP) in diverse pediatric populations. METHODS: Three distinct populations were studied: European American and African American children living in Birmingham, Alabama and European children living in Lisbon, Portugal. Each child completed a standard ADP testing protocol, including a measured TGV according to the manufactures software criteria. Measured TGV was compared to the predicted TGV from current adult-based ADP proprietary equations and to the recently developed child-specific TGV equations of Fields et al. Similarly, percent body fat, derived using the TGV prediction equations, was compared to percent body fat derived using measured TGV. RESULTS: Predicted TGV from adult-based equations was significantly different from measured TGV in girls from each of the three ethnic groups (P < 0.05), however child-specific TGV estimates did not significantly differ from measured TGV in any of the ethnic or gender groups. Percent body fat estimates using adult-derived and child-specific TGV estimates did not differ significantly from percent body fat measures using measured TGV in any of the groups. CONCLUSION: The child-specific TGV equations developed by Fields et al. provided a modest improvement over the adult-based TGV equations in an ethnically diverse group of children

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    KG2B, a collaborative benchmarking exercise for estimating the permeability of the Grimsel granodiorite - Part 1: Measurements, pressure dependence and pore-fluid effects

    Get PDF
    Measuring the permeability of tight rocks remains a challenging task. In addition to the traditional sources of errors that affect more permeable formations (e.g. sample selection, non-representative specimens, disturbance introduced during sample acquisition and preparation), tight rocks can be particularly prone to solid–fluid interactions and thus more sensitive to the methods, procedures and techniques used to measure permeability. To address this problem, it is desirable to collect, for a single material, measurements obtained by different methods and pore-fluids. For that purpose a collaborative benchmarking exercise involving 24 laboratories was organized for measuring the permeability of a single low permeability material, the Grimsel granodiorite, at a common effective confining pressure (5 MPa). The objectives of the benchmark were: (i) to compare the results for a given method, (ii) to compare the results between different methods, (iii) to analyze the accuracy of each method, (iv) to study the influence of experimental conditions (especially the nature of pore fluid), (v) to discuss the relevance of indirect methods and models and finally (vi) to suggest good practice for low permeability measurements. In total 39 measurements were collected that allowed us to discuss the influence of (i) pore-fluid, (ii) measurement method, (iii) sample size and (iv) pressure sensitivity. Discarding some outliers from the bulk data set (4 out of 39) an average permeability of 1.11 × 10−18 m² with a standard deviation of 0.57 × 10−18 m² was obtained. The most striking result was the large difference in permeability for gas measurements compared to liquid measurements. Regardless of the method used, gas permeability was higher than liquid permeability by a factor approximately 2 (kgas = 1.28 × 10−18 m² compared to kliquid = 0.65 × 10−18 m²). Possible explanations are that (i) liquid permeability was underestimated due to fluid-rock interactions (ii) gas permeability was overestimated due to insufficient correction for gas slippage and/or (iii) gases and liquids do not probe exactly the same porous networks. The analysis of Knudsen numbers shows that the gas permeability measurements were performed in conditions for which the Klinkenberg correction is sufficient. Smaller samples had a larger scatter of permeability values, suggesting that their volume were below the Representative Elementary Volume. The pressure dependence of permeability was studied by some of the participating teams in the range 1–30 MPa and could be fitted to an exponential law k = ko.exp(–γPeff) with γ = 0.093 MPa−1. Good practice rules for measuring permeability in tight materials are also provided

    Weakening of Peridotite Sheared at Hydrothermal Conditions

    No full text
    Abstract We conducted triaxial friction tests at hydrothermal conditions (25°C–350°C) on gouges of peridotite and its principal mineral constituents olivine and orthopyroxene. Pore‐fluid chemistry was varied by the use of peridotite, granite, or quartzite driving blocks (representing wall rock) housing the gouge layer. Samples sheared at slow rates initially strengthen to a peak value, and then weaken toward a residual strength. The transition is accompanied by a change from velocity‐weakening to velocity‐strengthening behavior marked by a series of small stress drops. The extent of weakening varies with the ultramafic mineralogy and with the chemical environment established by the driving block lithology. The strengths of olivine and olivine‐rich peridotite gouges decrease substantially (to μ ∼ 0.25–0.30), and that of orthopyroxene to a lesser extent, at temperatures ≥200°C when sheared between crustal driving blocks. Less weakening is observed in the peridotite‐block experiments; the minimum strength of the peridotite gouges (μ ∼ 0.5) occurs at 250°C, the temperature at which olivine hydration rates are near their maximum in ultramafic rocks. The strength reductions in all experiments are attributed to solution‐transfer (pressure solution) processes that come to predominate over cataclastic mechanisms during shear. The lower pH of fluids in contact with silica‐saturated crustal rocks enhances the weakening of olivine‐rich gouges. In these short‐duration experiments, secondary phyllosilicate mineral growth was of a limited extent and varied with gouge and wall‐rock mineralogy and with temperature. Over geologic time spans, however, the alteration assemblages will assume an increasingly important role in fault‐zone behavior

    Fault Growth and Acoustic Emissions in Confined Granite

    No full text
    corecore