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émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47309932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00172592v2


 

RUPTURE BY DAMAGE ACCUMULATION IN ROCKS 
 
David Amitrano  
LIRIGM, Université J. Fourier, Grenoble,  
Maison des Geosciences, 1381 rue de la Piscine,  
BP 53, 38041, Grenoble Cedex 9, France  
Tel  (+33) 476 82 80 85 - Fax  (+33) 476 82 80 70  
Email: David.amitrano@ujf-grenoble.fr
 
 
Abstract.  
The deformation of rocks is associated with microcracks nucleation and propagation, i.e. 
damage. The accumulation of damage and its spatial localization lead to the creation of a 
macroscale discontinuity, a so-called “fault” in geological terms, and to the failure of the 
material, i.e., a dramatic decrease of the mechanical properties as strength and modulus. The 
damage process can be studied both statically by direct observation of thin sections and 
dynamically by recording acoustic waves emitted by crack propagation (acoustic emission). 
Here we first review such observations concerning geological objects over scales ranging from 
the laboratory sample scale (dm) to seismically active faults (km), including cliffs and rock 
masses (Dm, hm). These observations reveal complex patterns in both space (fractal properties 
of damage structures as roughness and gouge), time (clustering, particular trends when the 
failure approaches) and energy domains (power-law distributions of energy release bursts). We 
use a numerical model based on progressive damage within an elastic interaction framework 
which allows us to simulate these observations. This study shows that the failure in rocks can 
be the result of damage accumulation. 
Keywords: Damage localization, acoustic emission, mesoscale modelling 
 
1. Introduction.  
Deformation of rocks, when loaded at high strain rate and low temperature, involves damage 
processes such as microfracturing (King and Sammis, 1992; Kranz, 1983). These low scale 
defects induce material damage, i.e., reduced elastic and strength properties. As the crack 
propagation emits acoustic waves, the damage activity can be observed through seismic 
activity (so called acoustic emission at laboratory sample scale or micro-seismicity at rock 
massive scale). During the deformation process, the damage localization can lead to the 
nucleation of a macroscopic discontinuity (faulting) associated with a dramatic stress release 
which characterizes brittle behavior (Cox and Meredith, 1993; Jaeger and Cook, 1979; Lockner 
et al., 1991; Scholz, 1990). The change of loading conditions (reduced strain rate, increased 
temperature or confining pressure) induces a change of the macroscopic behavior, which 
becomes progressively more ductile (absence of macroscopic stress drop) and on damage 
repartition, which becomes more diffuse (Jaeger and Cook, 1979; Kranz, 1983; Menendez et 
al., 1996). The identification of the parameters controlling both the macroscopic behavior and 
the spatial damage repartition is an important topic for numerous geomechanics domains 
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(underground excavation, slope instability, dams, earth-crust seismicity), because it determines 
the ability to predict dramatic ruptures (rockbursts, rock masses collapse, earthquakes, etc.). 
The damage localization process in rocks has been often modeled to consider either a 
discontinuous media containing propagating cracks (Costin, 1983; Cowie et al., 1993; Li et al., 
2000; Scavia, 1995) or a continuous material subject to a bifurcation phenomena (Rice, 1975; 
Rudnicki and Rice, 1975). An intermediary approach consists in considering the material to be 
continuous at mesoscale. The cracking is taken into account through elastic damage (reduction 
in the apparent elastic modulus). In this way, using local progressive damage and elastic 
interaction, previous attempts succeeded in modelling either macroscopic plasticity (Zapperi et 
al., 1997b) or macroscopic brittleness (Tang, 1997; Tang and Kaiser, 1998). Amitrano et al. 
(1999), using a local scalar damage formulation associated with a tensorial elastic interaction 
model, succeeded in switching continuously from macroscopic plasticity, with diffuse damage, 
to macroscopic brittleness, with localised damage. After these results, the brittle-ductile and 
localized-diffuse transitions appear to be controlled by a single parameter, the internal friction. 
These numerical results appear to be in good agreement with laboratory experiments 
(Amitrano, 2003) and earthcrust observations (Gerstenberger et al., 2001; Mori and 
Abercombie, 1997; Schorlemmer and Wiemer, 2005; Sue et al., 2002). In this paper we first 
review experimental observations of failure in rocks, distinguishing static observation of 
damage structure and dynamic observation of damage dynamics. Then we use a numerical 
model of progressive damage to show how fracture may result from damage accumulation. 
 
2. Experimental observations of damage in rocks 
2.1 Damage structure. 
During the first steps of the loading of initially intact rocks, microfracturing appears to be 
homogeneously distributed in the whole material and mainly in mode I. As microfracturing 
progresses, cooperative interactions of cracks take place and lead to the coalescence of 
microcracks and the initiation of a macroscopic fracture which is macroscopically in mode II 
(Amitrano and Schmittbuhl, 2002; Costin, 1983; Kranz, 1983; Reches and Lockner, 1994; 
Schulson et al., 1999). Such a coalescence process has been experimentally observed by 
acoustic emission source location (Lockner and Byerlee, 1991). After failure, or when the 
discontinuity already exists, deformation is localized along the rupture band. Low-scale 
observations reveal that the rupture zone or shear band is made of granular material (called 
gouge or cataclasis in geological terms), filled in between two rupture surfaces. The different 
aspects of damage -- cracks, rupture surface, gouge -- that result from the deformation process, 
can be observed either at the field scale (natural faults) or at the laboratory sample scale (e.g. 
Keller et al., 1997; Wibberley et al., 2000). Shear deformation occurs both on the rupture 
surface and within the gouge layer involving friction surface erosion (e.g. Wang and Scholz, 
1994) and grain fracturing (Biarez and Hicher, 1997; Michibayashi, 1996). The latter reduces 
particle size as shear progresses. Thin particles might form subshear bands as observed both at 
laboratory scale or at field scale (Amitrano and Schmittbuhl, 2002; Boullier et al., 2004; Lin, 
1999; Mair et al., 2000; Menendez et al., 1996; Moore et al., 1989). Each aspect of the damage 
process during fracturing reveals scaling invariances (King and Sammis, 1992; Turcotte, 1992). 
Power law scaling is found for: crack lengths, crack spatial distributions (Hirata et al., 1987; 

2 



 

Velde et al., 1993), rupture surface roughness (Bouchaud, 1997; Bouchaud et al., 1990; Brown 
and Scholz, 1985; Schmittbuhl et al., 1993; Schmittbuhl et al., 1995), and grain-size 
distribution of the gouge (Amitrano and Schmittbuhl, 2002; Boullier et al., 2004; Marone and 
Scholz, 1989; Sammis and Biegel, 1989; Weiss and Gay, 1998). The self affine properties of 
fracture roughness is widely observed in mode I fracture obtained by traction. They have been 
also observed for fracture resulting from damage localization which is macroscopically mode II 
(Amitrano and Schmittbuhl, 2002). The power-law distribution of grain size has been also 
observed for gouge sampled within the damaged zone of seismic fault (Boullier et al., 2004). 
 
2.2 Damage dynamics.  
The mechanical loading of rocks involves local inelastic processes that produce acoustic wave 
emissions (AE). This provides a tool for following the damage dynamics during the 
deformation and failure processes. The correlation between AE activity and macroscopic 
inelastic strain has been established in many experimental (e.g. Lockner and Byerlee, 1991; 
Scholz, 1968a) and numerical (e.g. Young et al., 2000) studies. The AE tool has been 
extensively used at the laboratory rock sample scale (see Lockner, 1993 for a review) and at an 
intermediate scale between the lab scale and the large tectonic earthquakes, for studies of 
seismicity and rockburst in mines or tunnels (e.g. Nicholson, 1992; Obert 1977) and for 
monitoring slope stability related to either open mine, quarry, landslides, rocky-cliffs or 
volcano flanks (Amitrano et al., 2005; Hardy and Kimble, 1991; e.g. McCauley, 1976). 
Fracturing dynamics during mechanical loading, observed through AE monitoring, usually 
displays a power law distribution of acoustic events size (Scholz, 1968b). 
   (1) ( ) bAAN −> ~
Where A is the maximum amplitude of AE events, N(>A) is the number of events with 
maximum amplitude greater than A, b is a constant. In a log-log representation, this distribution 
appears linear and b is given by the slope of the line. 
  (2) ( ) AbAN log~log −>
This distribution exhibits remarkable similarity to the Gutenberg-Richter relationship observed 
for earthquakes (Gutenberg and Richter, 1954). 
  (3) ( ) bMMN −> ~log
where N(>M) is the number of earthquakes with a magnitude larger than M. Assuming that the 
magnitude is proportional to the log of the maximal amplitude of the seismic signal, the b 
values obtained from the magnitude or the amplitude can be compared (Weiss, 1997). 
Rigorously, the amplitude measured at a given distance from the source should be corrected for 
the attenuation. Nevertheless, theoretical (Weiss, 1997) and experimental studies (Lockner, 
1993) have shown that attenuation has no significant effect on the b value. 
In order to quantitatively estimate the damage localization, many authors use the spatial 
correlation integral method (Grassberger and Prococcia, 1983) for characterizing the 
distribution of the AE source cloud. The spatial correlation integral is defined as: 

 ( ) ( ) ( )rRN
NN

rC >
−

=
1

2   (4) 
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where N is the total number of damage events, N(R > r) is the number of pairs of events 
separated by a distance smaller than r. If this integral exhibits a power law, , the 
population can be considered as fractal and D

( ) 2~ DrrC

2 is the correlation dimension. 
As power laws indicate scale invariance and because of the similarities in the physics of the 
phenomena (wave propagation induced by fast source motion), AE of rocks observed in the 
laboratory has been considered as a small scale model for the seismicity in rock masses 
(rockbursts) or in the Earth’s crust (earthquakes) (Mogi, 1962; Scholz, 1968b). Observations of 
both earthquakes and AE show variations of the b value in time and space domains which are 
usually explained using fracture mechanics and/or the self organized criticality (SOC) concept. 
Mogi (1962) suggested that the b-value depends on material heterogeneity, a low heterogeneity 
leading to a low b-value. Scholz (1968b) observed that the b-value decreases before the peak 
stress is achieved and argued for a negative correlation between b-value and stress. Main et al. 
(1989) observed the same variation but invoked a negative correlation between the b-value and 
the stress intensity factor K. Following this idea, the authors proposed different patterns of b-
value variation before the macrorupture, driven by fracture mechanics and the type of rupture 
(brittle-ductile). The relationship between the b-value and the fractal dimension D2 of AE 
source locations was also investigated (Lockner and Byerlee, 1991; Lockner et al., 1991) and 
showed a decrease of b value simultaneous to the strain localization, i.e. to a decrease of the D2 
value which appear to be associated with a ductile macroscopic behavior. Numerical models 
based on elastic damage (Tang, 1997; Tang and Kaiser, 1998) succeed in simulating brittle 
behavior. Discrete element models simulating macroscopic behavior ranging from brittle to 
ductile and power law distributions of earthquakes have also been proposed (Li et al., 2000; 
Place and Mora, 2000; Wang et al., 2000). Wang et al. (2000) argue that the b-value depends 
on the cracks density distribution but do not report a relation between the b-value and the type 
of mechanical behavior. Amitrano et al. (1999) and Amitrano (2003) proposed a model which 
simulates both ductile and brittle behavior and show that the b-value depends on the 
macroscopic behavior. These results suggest that a relationship between the b-value and the 
macroscopic behavior may exist. 
Mori and Abercombie (1997) observed a decrease of the b-value with increasing depth for 
earthquakes in California. They suggested that the b-decrease was related to a diminution of the 
heterogeneity as depth increases. Systematic tests of the dependence of the b value on depth 
have been performed by Gertenberger (2001) which confirm these general results but show 
some discrepancies depending on the tectonic stress regime. The depth dependence of the b-
value have also been observed for the western Alps seismicity (Sue et al., 2002) and for 
earthquakes sequence along the Aswan Lake in Egypt (Mekkawi et al., 2002). Recent results 
show that the b-value depends on the tectonics regime (Schorlemmer and Wiemer, 2005) and 
systematically variate for normal faulting (extension), inverse faulting (compression) and 
strike-slip (plane shearing). Other authors have used cellular automata (Chen et al., 1991; 
Olami et al., 1992) or lattice solid models (Zapperi et al., 1997b) to simulate power law 
distribution of avalanches. 
Acoustic monitoring has been used for studying the damage acceleration before failure. 
Laboratory scale experiments on heterogeneous material have revealed that the acceleration 
follows a power law (Guarino et al., 1998; Johansen and Sornette, 2000; Nechad et al., 2005). 
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This power law accelerating microdamage before the macroscopic brittle failure has been 
suggested to be the fingerprint of a critical behaviour analog to a thermodynamics phase 
transition (Buchel and Sethna, 1997; Kun and Herrmann, 1999; Sornette, 2000; Sornette and 
Andersen, 1998; Zapperi et al., 1997a). This kind of acceleration has been recently reported for 
the seismic events preceding the collapse of a chalk cliff (Amitrano et al., 2005). 
Nonetheless many other experiments do not reproduce the patterns predicted by statistical 
physics before brittle failure and the applicability of these brittle failure models to the earth 
crust fracturing is still debated, e.g. the so-called critical point hypothesis for earthquakes (Bufe 
and Varnes, 1993; Jaume and Sykes, 1999; Zoller and Hainzl, 2002). 
 
3. Numerical modelling 
3.1 Progressive damage model 
The model we use here (Amitrano, 2003; Amitrano et al., 1999) integrates the main features of 
two previous models which simulate respectively macroscopic ductility (Zapperi et al., 1997b) 
or brittleness (Tang, 1997; Tang and Kaiser, 1998). It is based on progressive isotropic elastic 
damage. The effective elastic modulus, Eeff, is expressed as a function of the initial modulus, E0 
and damage, D. 
 Eeff=E0(1-D) (5) 
Such a relation works when the considered volume is large compared with the defect size, such 
as cracks, and then can be considered as a mesoscale relationship. The damage parameter, D, 
has been proposed to be related to crack density (see Kemeny and Cook, 1986 for a review). 
The simulated material is discretized using a 2 D finite element method with plane strain 
hypothesis. The loading consists in increasing the vertical displacement of the upper model 
boundary. When the stress in an element exceeds a given damage threshold, its elastic modulus 
is multiplied by a factor (1-D), D being constant. Because of the elastic interaction, the stress 
redistribution around a damaged element can induce an avalanche of damages that we call an 
event. The total number of damaged elements during a single loading step is the avalanche size, 
which is comparable to the acoustic emission event size observed in laboratory experiments. 
The Mohr-Coulomb criterion is used as a damage threshold,  
 C+= μστ , (6) 
where τ is the shear stress; σ is the normal stress; C is the cohesion; and µ is the internal 
friction coefficient. This criterion has been chosen because of its simplicity and because it 
allows us to check the sensitivity of the model to each parameter (C, µ, σ) in an independent 
manner. In the absence of heterogeneity, the behavior of the model is entirely homogenous, 
(i.e. no damage localization occurs) and the local behavior is replicated at the macroscopic 
scale. To obtain macroscopic behaviors differing from those of the elements and damage 
localization it is necessary to introduce heterogeneity. To simulate material heterogeneity the 
cohesion of each element, C, is randomly drawn from a uniform distribution. 
 
3.2 Numerical simulation results 
The study of the model sensitivity has shown that confining pressure, cohesion and damage 
parameter D do not change the type of macroscopic behaviour, nor the kind of localization 
mode, but only the macroscopic stress level (Amitrano et al., 1999). On the contrary, the 
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internal friction influences both the macroscopic behaviour and the damage localisation. 
Consequently, we present the results obtained with different values of µ and fixed values for 
the others parameters: Einitial = 50 GPa, ν = 0.25, C random between 25 and 50 MPa, D = 0.1. 
The simulations are performed with uniaxial stress conditions (σ2=σ3=0). 
Figure 1 presents the macroscopic behaviour simulated for different values of the internal 
friction µ. σ1 is the major main stress and ε1 is the major main strain calculated at the model 
boundary, i.e., the mean values over the boundary. One may observed that for µ ranging from 0 
to 1.5, which corresponds to the variation range observed for rocks, the macroscopic behaviour 
ranges from pure ductility to brittleness, without changing the elementary behaviour of the 
elements. Figure 2 displays the damage map at the end of the simulations for 3 simulations with 
µ=0, µ=0.4 and µ=1. The color scale bar indicates the damage of each element (i.e. E/E0). One 
may observe that damage localization is dramatically enhanced when the µ parameter 
increases. 
In order to estimate quantitatively the grade of damage localization we calculated the 
correlation integral of the damage at the end of each simulation. The correlation dimension D2 
was calculated by linear regression in the log-log plane. The range used for the linear 
regression was restricted to the linear part of the curves (r=0.01-0.1). A value of D2 near 2 
indicates that the spatial repartition is homogeneous. A value near 1 indicates that the damage 
is localized along a line. Figure 3 shows the correlation integrals calculated for all the 
simulations and the corresponding value of the correlation dimension. These results show that 
the damage localization progressively increases as the µ parameter is increased. The study of 
the damage localization during the simulation shows, in the case of brittle behaviour (i.e., 
presence of a stress drop after the stress peak), the band localization occurs during the 
macrofailure. This is in good agreement with experimental studies using acoustic emission to 
assess the damage localization process (Lockner and Byerlee, 1991). The ductile behavior is 
associated with a diffuse damage (D2 ~ 2). Note that tuning the µ parameter allows us to 
simulate all intermediary behaviours from pure ductility to pure brittleness. This progressive 
change in the macroscopic behaviour is associated with a progressive change from diffuse to 
localized damage. 
 
The brittle-ductile behavior appears to be related to the diffuse-localized damage repartition 
respectively. These results suggest that the brittle-ductile transition and the associated 
localized-diffuse transition are controlled by a unique parameter, the internal friction µ. This is 
in agreement with experimental results for which it has been established that materials with 
large internal friction tend to fail by localized failure, whereas those with very low internal 
friction angle fail by a diffuse mode (Jaeger and Cook, 1979). Because we use the Mohr-
Coulomb criterion, for which the internal friction angle is independent of the confining 
pressure, the simulated macroscopic behavior is insensitive to the confining pressure. This 
feature is in disagreement with experimental observations, which demonstrate that the increase 
of confining pressure induces the brittle-ductile transition. An improvement of the model has 
been proposed (Amitrano, 2003) using a pressure sensitive criterion in order to simulate the 
pressure induced brittle-ductile transition. As we focus here on the failure induced by damage 
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accumulation, all the simulations presented here are realized with the simplest first version of 
the model. 
In order to better quantify the spatial structure of the damage, we calculated the directional 
spatial correlogram (DSC) of the total amount of damage D=1-E/E0. For a given direction, nr , 
the DSC is calculated as the autocorrelation function along this direction, i.e. the correlation 
between the damage value observed at point x and at point x’ separated by a distance λ along 
direction  (at an angle α relatively to the loading direction). The correlation is calculated as 
the covariance between 

nr

( )xD r  and ( nxD )rr λ+  divided by the variance of ( )xD r . 

 ( ) ( ) ( )( )
( )( )xD

nxDxDDSC r

rrr

var
,var, λλα +

=   (7) 

We calculated the DSC as a function of the distance λ for all values of α between 0 and 180°, 
with a step of 5°. This analysis is able to reveal the spatial correlation of the damage and its 
anisotropy. The direction of the damage band is characterized by a long range correlation and 
the perpendicular direction by a correlation length equivalent to the band thickness. Figure 4 
shows the DSC for three different simulations performed with µ=0, µ=0.4 and µ=1.5 
respectively. DSC was calculated for 10 successive steps of the simulation corresponding to an 
equal number of damage events. The legend indicates the corresponding normalized 
deformation. The direction α corresponds to the direction of the shear band and α+π/2 to the 
shear band normal. One may observe that the correlation length at the beginning of the 
simulation is near zero for directions α and α+π/2. This is observed for all the directions, 
indicating an isotropic damage with no spatial correlation. The damage at a given point is 
independent of the damage in its neighbourhood. As the simulation progress, the correlation 
length increases in the same manner for all the directions. At a given step the anisotropy 
appears as the correlation length increases faster in the direction of the future shear band. In the 
perpendicular direction the correlation becomes negative for a length corresponding to the 
thickness of the shear band. This progression from isotropic uncorrelated damage to anisotropic 
correlated damage is observed for all the simulations. An interesting point is that the increase 
of correlation length appears significantly before the peak stress, including for the brittle 
behavior. This should be used for the forecasting of macroscopic failure. 
 
The damage event size (i.e. the number of damaged elements in each single avalanche) 
distribution has been analyzed as a function of the internal friction µ and of the deformation. 
Figure 5 shows the cumulative distribution function (cdf) and the probability density function 
(pdf) of the damage event size for simulations performed with various µ. The cdf and pdf show 
power law trends in the range 1-100. For larger size events, cdf displays a cut-off (lack of large 
events compared to the power-law trend) for low values of µ. As µ increases this cut-off 
progressively vanishes. For larger values of µ the cut-off is replaced by an excess of large 
events compared to the power-law trend. The larger event corresponds in this last case to the 
macro failure event. 
Figure 6 shows the evolution of cdf during the deformation for two simulations with µ=0 and 
µ=1.5 respectively. For both simulations the cdf displays a power law trend, for low size events 
with a decrease of the exponent. For µ=0, this decrease is associated with a cut-off for large 
sizes. For µ=1.5 the decrease is of lesser amplitude and no cut-off appears. On the contrary an 
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excess of large events appears in the period including the macro failure which is out of trend 
compared with the power law. 
 
4. Summary and discussion 
In the first part of the paper we have reviewed works related to the observation of rupture in 
rocks which reveal complex patterns including fractal properties of damage structure, as self 
affinity of fracture surfaces and power-law distribution of grain size in highly damaged zones. 
The damage dynamics, as observed by acoustic emission, displays power-law distributions with 
exponent value depending on the pressure and on the proximity of the failure. The final failure 
of the material appears to be the result of damage localization / accumulation. For investigating 
this process we used a simple progressive damage model able to reproduce the major part of 
these observations. 
The proposed model is based on an elementary progressive damage within an elastic 
heterogeneous model. Each element has isotropic properties associated with a simple 
behaviour, i.e., decrease of the elastic modulus by discrete damage events. At the macroscopic 
scale, the model reproduce different aspects of a complex behaviour: the mechanical behaviour 
is non-linear and ranges from ductile to brittle, the final damage state has a fractal structure, the 
size-frequency of damage events follows a power-law. As these properties are not incorporated 
at the elementary scale, they are emerging properties of the system due to the interaction 
between elements. According to that, the simulated deformation process can be considered as a 
complex system. The emergence of scale free distributions for both size and space distributions 
is a supplementary aspect of this complexity. We have shown that changing the internal friction 
µ modifies all the macroscopic properties. In particular we have observed that the damage 
localization is dramatically enhanced when the µ parameter increases. The study of the stress 
field around a single defect (Amitrano et al., 1999), has shown that this parameter strongly 
influences the interaction geometry between elements. The higher the µ parameter is, the more 
anisotropic the interaction is. This low scale anisotropic interaction controls the mode of 
damage localisation we can observe at the macroscopic scale. In the case of a highly localized 
damage (i.e. for µ > 1), the localization occurs in an instable mode associated with a dramatic 
stress drop, we considered as the fingerprint of a macroscopically brittle behaviour. The µ 
parameter influences also the event size distribution as a result of the local interaction between 
elements (more or less anisotropic). Hence the small scale anisotropy influences the damage 
localisation, the avalanches dynamics and the macroscopic behaviour. Despite the limited scale 
dynamics of the model, we observed the scaling relationship for damage structure, over 1.5 
order of magnitude, characterized by a power-law trend of the spatial correlation integral. The 
event size distribution is a power-law which evolves during the simulation showing a decrease 
of the exponent, i.e. an increase of the event mean size, in agreement with laboratory 
observation. In the brittle case, the failure corresponds to the larger event in size, which is out 
of range compared with the power-law trend. The study of spatial correlation of the damage 
during the simulation has shown an increase of the correlation length more pronounced in the 
direction of the localization band. This increase of length is associated with the event size 
increase. The failure occurs when correlation length becomes large enough for leading to a 
macrofailure event, i.e. the size of the model. 
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These numerical results show that damage accumulation leading to the failure is strongly 
influenced by the local interaction geometry which, depending on the anisotropy, can lead 
either to a macroscopically ductile behaviour with progressive localization, i.e., without stress 
drop, or to a macroscopically brittle behaviour associated to a sudden localization event. All 
these results are obtained without changing the basic elementary behaviour but only the 
interaction. This mesoscale approach could be an alternative to the microscopic approach, 
dedicated to the study of fracture propagation and to the macroscopic approach based on 
constitutive laws. It provides observables which are emerging properties from elementary 
interaction and, in this regard, consider the rupture process as a complex phenomenon. 
 
5. Conclusions 
We have shown that the deformation and rupture process in rocks reveals many complex 
behaviours as fractal structure of damage, power-law distribution of damage events, damage 
localization associated to brittleness/ductility. Using a simple model based on elastic 
interaction and progressive damage we succeed in reproducing the major part of this 
complexity. The study of damage spatial correlation revealed that the process of damage 
localization is related to the passage from isotropic uncorrelated damage to anisotropic 
correlated damage. The differences in the localization mode (more or less diffuse and 
progressive) are related to the type of local interaction between elements which can be tuned, in 
the model we used, by changing the internal friction. Such a mesoscopic approach could be an 
alternative to the microscopic one based on fracture mechanics concept or to the macroscopic 
one based on constitutive laws. 
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Figure 1 : Macroscopic mechanical behaviours simulated for different µ values. Tuning the µ 
parameter allows switching continuously for ductile to brittle behaviours. 
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Figure 2 : Damage map for simulation performed with µ=0 (left), µ=0.4 (center), µ=1 (right). 
The color bar indicates the value of the damage, D= 1-E/E0. The increase of the µ parameter 
leads to more localized damage. 
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Figure 3: a) Spatial correlation integral, C(r), of the damage events for various values of µ. b) 
Correlation dimension, D2, calculated by least square regression of C(r) in a loglog plot. The 
regression is restricted to linear part of C(r), i.e. for r=0.01-0.5. Dotted lines indicated 
particular values of D2= 1 and D2=2. 
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Figure 4: Damage Spatial Correlogram (DSC) calculated for three different simulations (µ=0, 
µ=0.4, µ=1.5). DSC is calculated for successive steps. DSC is calculated for 10 successive 
steps of the simulation corresponding to an equal number of damage events. The legend 
indicates the corresponding normalized deformation. The direction α corresponds to the 
direction of the shear band and α+π/2 to the perpendicular. 
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Figure 5: a) Cumulative distribution function (cdf), b) probability density function (pdf) of the 
damage event size for simulations performed with various µ. 
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Figure 6: Cumulative distribution function for µ=0 and µ=1.5. The cdf has been calculated for 
5 successive steps of equal number of events. The legend indicates the corresponding range of 
normalized deformation. 
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