25 research outputs found

    Crossover from Fermi liquid to Wigner molecule behavior in quantum dots

    Full text link
    The crossover from weak to strong correlations in parabolic quantum dots at zero magnetic field is studied by numerically exact path-integral Monte Carlo simulations for up to eight electrons. By the use of a multilevel blocking algorithm, the simulations are carried out free of the fermion sign problem. We obtain a universal crossover only governed by the density parameter rsr_s. For rs>rcr_s>r_c, the data are consistent with a Wigner molecule description, while for rs<rcr_s<r_c, Fermi liquid behavior is recovered. The crossover value rc4r_c \approx 4 is surprisingly small.Comment: 4 pages RevTeX, 3 figures, corrected Tabl

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    Emotions Detection Through the Analysis of Physiological Information During Video Games Fruition

    No full text
    Games are interactive tools able to arouse emotions in the user. This is particularly relevant in Serious Games, where the main goal could be educational, pedagogical, etc. Therefore, understanding the players\u2019 emotions during the game fruition could provide a valid support to the developers and researchers in video games field in order to design a more effective product. The presented research is a starting point to propose a framework for the determination of the player emotions through physiological information. We acquire several signals: facial electromyography, electrocardiogram, galvanic skin response, and respiration rate. We then compare the data to an emotional player assessment, defined using a valence and an arousal vector, through the application of Machine Learning techniques. The obtained results seem to suggest that the proposed approach can represent a valid tool to analyze the players\u2019 emotions
    corecore