22 research outputs found

    The 894G>T variant in the endothelial nitric oxide synthase gene and spina bifida risk

    Get PDF
    The 894G>T single nucleotide polymorphism (SNP) in the endothelial NOS (NOS3) gene, has recently been associated with embryonic spina bifida risk. In this study, a possible association between the NOS3 894G>T SNP and spina bifida risk in both mothers and children in a Dutch population was examined using both a case-control design and a transmission disequilibrium test (TDT). Possible interactions between the NOS3 894G>T SNP and the MTHFR 677C>T SNP, elevated plasma homocysteine, and decreased plasma folate concentrations were also studied. The NOS3 894TT genotype did not increase spina bifida risk in mothers or children (OR 1.50, 95%CI 0.71–3.19 and OR 1.78, 95%CI 0.75–4.25, respectively). The TDT demonstrated no preferential transmission of the NOS3 894T allele (Χ2 = 0.06, P = 0.81). In combination with the MTHFR 677TT genotype or elevated plasma homocysteine concentrations, the NOS3 894GT/TT genotype increased maternal spina bifida risk (OR 4.52, 95%CI 1.55–13.22 and OR 3.38, 95%CI 1.46–7.84, respectively). In our study population, the NOS3 894GT/TT genotype might be a risk factor for having a spina bifida affected child in mothers who already have an impaired homocysteine metabolism

    In vivo protein tyrosine nitration in Arabidopsis thaliana

    Get PDF
    Nitration of tyrosine (Y) residues of proteins is a low abundant post-translational modification that modulates protein function or fate in animal systems. However, very little is known about the in vivo prevalence of this modification and its corresponding targets in plants. Immunoprecipitation, based on an anti-3-nitroY antibody, was performed to pull-down potential in vivo targets of Y nitration in the Arabidopsis thaliana proteome. Further shotgun liquid chromatography–mass spectrometry (LC-MS/MS) proteomic analysis of the immunoprecipitated proteins allowed the identification of 127 proteins. Around 35% of them corresponded to homologues of proteins that have been previously reported to be Y nitrated in other non-plant organisms. Some of the putative in vivo Y-nitrated proteins were further confirmed by western blot with specific antibodies. Furthermore, MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of protein spots, separated by two-dimensional electrophoresis from immunoprecipitated proteins, led to the identification of seven nitrated peptides corresponding to six different proteins. However, in vivo nitration sites among putative targets could not be identified by MS/MS. Nevertheless, an MS/MS spectrum with 3-aminoY318 instead of the expected 3-nitroY was found for cytosolic glyceraldehyde-3-phosphate dehydrogenase. Reduction of nitroY to aminoY during MS-based proteomic analysis together with the in vivo low abundance of these modifications made the identification of nitration sites difficult. In turn, in vitro nitration of methionine synthase, which was also found in the shotgun proteomic screening, allowed unequivocal identification of a nitration site at Y287

    Rapid conditional targeted ablation of cells expressing human CD59 in transgenic mice by intermedilysin.

    No full text
    Conditional targeted cell ablation is a powerful approach for investigating the pathogenesis of human diseases and in vivo cellular functions. Intermedilysin (ILY) is a cytolytic pore-forming toxin secreted by Streptococcus intermedius that lyses human cells exclusively, owing to its receptor specificity for human CD59. We generated two transgenic mouse strains that express human CD59 either on erythrocytes (strain ThCD59(RBC)) or on endothelia (strain ThCD59(END)). Intravenous injection of ILY in ThCD59(RBC) mice induced acute intravascular hemolysis, leading to reduced nitric oxide bioavailability, increased platelet activation and rapid death. In ThCD59(END) mice, ILY induced rapid endothelial damage, leading to acute death and disseminated intravascular coagulation. Additionally, we show that human serum contains ILY-specific neutralizing antibodies not found in any other animal species. Together, these results suggest that this new rapid conditional targeted ILY-mediated cell ablation technique can be used in combination with any available transgenic expression system to study the physiologic role of specific cell populations
    corecore