76 research outputs found

    Acute treatment with relaxin attenuates the injury/ dysfunction induced by renal ischemia/reperfusion injury

    Get PDF
    Although preclinical and clinical studies have demonstrated that relaxin (RLX) ameliorates impaired renal function by exerting antifibrotic and regenerative effects, its role in renal ischemia/reperfusion (I/R) injury has never been investigated. Using a well-known rat model of 1h bilateral renal artery occlusion followed by 6 h reperfusion, we investigated the effects of human recombinant RLX (5 μg /Kg e.v.) given both at the beginning and after 3 h reperfusion. Serum and urinary indicators of renal injury and dysfunction were measured. Interestingly, administration of the exogenous RLX attenuated all markers of renal injury and dysfunction caused by I/R. Overall, we document here, for the first time, that RLX protects against I/R-induced renal injury and dysfunction. The results of this study offer good perspectives for the clinical potential of RLX in the medical treatment of renal diseases

    The Highly Energetic Expansion of SN2010bh Associated with GRB 100316D

    Get PDF
    We present the spectroscopic and photometric evolution of the nearby (z = 0.059) spectroscopically confirmed type Ic supernova, SN 2010bh, associated with the soft, long-duration gamma-ray burst (X-ray flash) GRB 100316D. Intensive follow-up observations of SN 2010bh were performed at the ESO Very Large Telescope (VLT) using the X-shooter and FORS2 instruments. Owing to the detailed temporal coverage and the extended wavelength range (3000--24800 A), we obtained an unprecedentedly rich spectral sequence among the hypernovae, making SN 2010bh one of the best studied representatives of this SN class. We find that SN 2010bh has a more rapid rise to maximum brightness (8.0 +/- 1.0 rest-frame days) and a fainter absolute peak luminosity (L_bol~3e42 erg/s) than previously observed SN events associated with GRBs. Our estimate of the ejected (56)Ni mass is 0.12 +/- 0.02 Msun. From the broad spectral features we measure expansion velocities up to 47,000 km/s, higher than those of SNe 1998bw (GRB 980425) and 2006aj (GRB 060218). Helium absorption lines He I lambda5876 and He I 1.083 microm, blueshifted by ~20,000--30,000 km/s and ~28,000--38,000 km/s, respectively, may be present in the optical spectra. However, the lack of coverage of the He I 2.058 microm line prevents us from confirming such identifications. The nebular spectrum, taken at ~186 days after the explosion, shows a broad but faint [O I] emission at 6340 A. The light-curve shape and photospheric expansion velocities of SN 2010bh suggest that we witnessed a highly energetic explosion with a small ejected mass (E_k ~ 1e52 erg and M_ej ~ 3 Msun). The observed properties of SN 2010bh further extend the heterogeneity of the class of GRB supernovae.Comment: 37 pages and 12 figures (one-column pre-print format), accepted for publication in Ap

    Comparison between physical and cognitive treatment in patients with MCI and Alzheimer's disease.

    Get PDF
    Cognitive and physical activity treatments (CT and PT) are two non-pharmacological approaches frequently used in patients with Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD). The aim of this study was to compare CT and PT in these diseases. Eighty-seven patients were randomly assigned to CT (n=30), PT (n=27) or control group (CTRL; n=30) for 6 months. The global cognitive function was measured by Mini Mental State Examination (MMSE). Specific neuropsychological tests explored attention, memory, executive functions, behavioral disorders. Cardiovascular risk factors (CVD) were collected. All measures were performed before (T0), after treatments (T1), and at three-months follow-up (T2). MMSE did not change from T0 to T1 and T2 in patients assigned to PT and CT, while CTRL patients showed a decline MCI: -11.8%, AD: -16.2%). Between group differences (MCI vs AD) were not found at T1 and T2. Significant worsening was found for CTRL in MCI (T0- T1: P=.039; T0-T2: P<.001) and AD (T0-T1: P<.001; T0-T2: P<.001), and amelioration was found for CT in AD (T0-T2: P<.001). Attention, executive functions and behavioral disorders were unaffected by either PT or CT. Memory was increased in patients with MCI assigned to PT (+6.9%) and CT (+8.5%).. CVD were ameliorated in the PT group. CTRL patients of both groups, revealed significant decline in all functions and no between groups differences were detected. PT appear to ameliorate CVD. Although between groups differences were not found, results suggest a major retention in MCI compared with AD, suggesting that the latter might benefit better of constant rather than periodic treatments. This study confirms the positive effects of CT and PT in mitigating the cognitive decline in MCI and AD patients, and it is the first to demonstrate their similar effectiveness on maintaining cognitive function

    Measurement of the muon decay spectrum with the ICARUS liquid Argon TPC

    Full text link
    Examples are given which prove the ICARUS detector quality through relevant physics measurements. We study the muon decay energy spectrum from a sample of stopping muon events acquired during the test run of the ICARUS T600 detector. This detector allows the spatial reconstruction of the events with fine granularity, hence, the precise measurement of the range and dE/dx of the muon with high sampling rate. This information is used to compute the calibration factors needed for the full calorimetric reconstruction of the events. The Michel rho parameter is then measured by comparison of the experimental and Monte Carlo simulated muon decay spectra, obtaining rho = 0.72 +/- 0.06(stat.) +/- 0.08(syst.). The energy resolution for electrons below ~50 MeV is finally extracted from the simulated sample, obtaining (Emeas-Emc)/Emc = 11%/sqrt(E[MeV]) + 2%.Comment: 16 pages, 8 figures, LaTex, A4. Some text and 1 figure added. Final version as accepted for publication in The European Physical Journal

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Alternative Uses of Luminescent Solar Concentrators

    No full text
    Over the last decade, the field of luminescent solar concentrators (LSC) has experienced significant growth, as noted by the increasing number of studies. However, so far, most of the devices developed have only been employed in a simple planar configuration coupled with silicon photovoltaic solar cells. This type of device is essentially a solar window whose main objective is to produce electrical power. However, due to the intrinsic nature of LSC, that is, the ability to absorb, downshift and concentrate the solar radiation that impinges on it, this photonic device can be used in alternative ways. In particular, in this review, we will explore several non-conventional applications in which LSCs are used successfully, including as solar bioreactors for algae development, photo reactors for organic synthesis, and as greenhouses
    corecore