65 research outputs found
Linfocitose monoclonal de células B: uma breve revisão para clínicos gerais
Monoclonal B-cell lymphocytosis (MBL) is a recently described medical condition that displays biological similarities to the most common subtype of adult leukemia in the Western world, i.e. chronic lymphocytic leukemia (CLL). Diagnostic criteria have been published with the aim of differentiating between these two entities. The overall prevalence of MBL is at least 100 times higher than that of CLL, which indirectly suggests that MBL is not necessarily a pre-leukemic condition, although in some circumstances, CLL cases can really be preceded by MBL. In view of this high prevalence rate, general clinicians and even non-hematological specialists have a high chance of being faced with individuals with MBL in their routine clinical practice. MBL is classified as "clinical MBL", "population-screening MBL" and "atypical MBL" and the clinical management of affected individuals depends greatly on this differentiation. The present review provides a guide to diagnosing and following up MBL patients.A linfocitose monoclonal de células B (LMB) é uma condição médica recentemente descrita que exibe similaridades biológicas com o mais comum subtipo de leucemia em adultos de países ocidentais, qual seja, a leucemia linfocítica crônica (LLC). Critérios diagnósticos foram publicados com o intuito de separar as duas entidades. A prevalência global da LMB é pelo menos 100 vezes maior do que a da LLC, o que, indiretamente, sugere que a LMB não é necessariamente uma condição pré-leucêmica, embora, em algumas circunstâncias, casos de LLC possam realmente ser precedidos pela LMB. Em virtude dessa alta taxa de prevalência, clínicos gerais e mesmo outros especialistas não hematologistas têm grande chance de deparar-se com casos de LMB em suas rotinas clínicas. A LMB é classificada como "LMB clínica", "LMB de screening populacional" e "LMB atípica", sendo que o manuseio clínico dos indivíduos afetados depende substancialmente dessa diferenciação. A presente revisão fornece um guia para o diagnóstico e acompanhamento dos pacientes com LMB.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an
Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
The ALICE experiment at the CERN LHC
ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008
Monoclonal B-cell lymphocytosis: a brief review for general clinicians
Monoclonal B-cell lymphocytosis (MBL) is a recently described medical condition that displays biological similarities to the most common subtype of adult leukemia in the Western world, i.e. chronic lymphocytic leukemia (CLL). Diagnostic criteria have been published with the aim of differentiating between these two entities. The overall prevalence of MBL is at least 100 times higher than that of CLL, which indirectly suggests that MBL is not necessarily a pre-leukemic condition, although in some circumstances, CLL cases can really be preceded by MBL. In view of this high prevalence rate, general clinicians and even non-hematological specialists have a high chance of being faced with individuals with MBL in their routine clinical practice. MBL is classified as "clinical MBL", "population-screening MBL" and "atypical MBL" and the clinical management of affected individuals depends greatly on this differentiation. The present review provides a guide to diagnosing and following up MBL patients
Monoclonal B-cell lymphocytosis in individuals from sporadic (non-familial) chronic lymphocytic leukemia families persists over time, but does not progress to chronic B-cell lymphoproliferative diseases
BACKGROUND: Monoclonal B-cell lymphocytosis is classified as 'high-count or clinical' monoclonal B-cell lymphocytosis and 'low-count or population' monoclonal B-cell lymphocytosis. Previously, 167 first-degree relatives pertaining to sporadic (non-familial) chronic lymphocytic leukemia families were studied and the presence of seven monoclonal B-cell lymphocytosis individuals was reported.OBJECTIVE: The aim of this report is to describe the outcomes of five of the original monoclonal B-cell lymphocytosis individuals.METHODS: Flow cytometry analysis was performed on mononuclear cells previously isolated from peripheral blood samples. A strategy of sequential gating designed to identify the population of CD19+/CD5+ B-lymphocytes was used and, subsequently, the monoclonal B-cell lymphocytosis cells were characterized by the CD20weak/CD79bweak/negative phenotype.RESULTS: The monoclonal B-cell lymphocytosis clone showed consistent stability over time with little variations in size. After a median follow-up of 7.6 years, none of the five monoclonal B-cell lymphocytosis individuals progressed to chronic lymphocytic leukemia or other B-cell lymphoproliferative disease.CONCLUSIONS: The data of this study suggest that chronic lymphocytic leukemia-like monoclonal B-cell lymphocytosis detected in the context of sporadic chronic lymphocytic leukemia families is not prone to clinical evolution and could be just a sign of immune senescence
Monoclonal B-cell lymphocytosis (MBL), CD4(+)/CD8(weak) T-cell large granular lymphocytic leukemia (T-LGL leukemia) and monoclonal gammopathy of unknown significance (MGUS): molecular and flow cytometry characterization of three concomitant hematological disorders
The diagnosis of T-cell large granular lymphocytic leukemia in association with other B-cell disorders is uncommon but not unknown. However, the concomitant presence of three hematological diseases is extraordinarily rare. We report an 88-year-old male patient with three simultaneous clonal disorders, that is, CD4+/CD8(weak) T-cell large granular lymphocytic leukemia, monoclonal gammopathy of unknown significance and monoclonal B-cell lymphocytosis. The patient has only minimal complaints and has no anemia, neutropenia or thrombocytopenia. Lymphadenopathy and hepatosplenomegaly were not present. The three disorders were characterized by flow cytometry analysis, and the clonality of the T-cell large granular lymphocytic leukemia was confirmed by polymerase chain reaction. Interestingly, the patient has different B-cell clones, given that plasma cells of monoclonal gammopathy of unknown significance exhibited a kappa light-chain restriction population and, on the other hand, B-lymphocytes of monoclonal B-cell lymphocytosis exhibited a lambda light-chain restriction population. This finding does not support the antigen-driven hypothesis for the development of multi-compartment diseases, but suggests that T-cell large granular lymphocytic expansion might represent a direct antitumor immunological response to both B-cell and plasma-cell aberrant populations, as part of the immune surveillance against malignant neoplasms
- …