479 research outputs found

    Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer

    Get PDF
    The process pp -> pl(+)l(-)p(()*()), with l(+)l(-) a muon or an electron pair produced at midrapidity with mass larger than 110 GeV, has been observed for the first time at the LHC in pp collisions at root s = 13 TeV. One of the two scattered protons is measured in the CMS-TOTEM precision proton spectrometer (CT-PPS), which operated for the first time in 2016. The second proton either remains intact or is excited and then dissociates into a low-mass state p*, which is undetected. The measurement is based on an integrated luminosity of 9.4 fb(-1) collected during standard, high-luminosity LHC operation. A total of 12 mu(+)/mu(-) and 8 e(+)e(-) pairs with m(l(+)l(-)) > 110 GeV, and matching forward proton kinematics, are observed, with expected backgrounds of 1.49 +/- 0.07 (stat) +/- 0.53 (syst) and 2.36 +/- 0.09 (stat) +/- 0.47(syst), respectively. This corresponds to an excess of more than five standard deviations over the expected background. The present result constitutes the first observation of proton-tagged gamma gamma collisions at the electroweak scale. This measurement also demonstrates that CT-PPS performs according to the design specifications.Peer reviewe

    Measurement of single-diffractive dijet production in proton-proton collisions at root s=8 TeV with the CMS and TOTEM experiments

    Get PDF
    A Publisher's Erratum to this article was published on 03 May 2021. https://doi.org/10.1140/epjc/s10052-021-08863-wPeer reviewe

    Measurement of single-diffractive dijet production in proton–proton collisions at s=8TeV\sqrt{s} = 8\,\text {Te}\text {V} with the CMS and TOTEM experiments

    Get PDF
    Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ ξ and the four-momentum transfer squared t. Both processes p p → p X p p → p X and p p → X p p p → X p , i.e. with the proton scattering to either side of the interaction point, are measured, where X X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton–proton collisions at s √ =8TeV s=8TeV during a dedicated run with β ∗ =90m β∗=90m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5nb −1 37.5nb−1 . The single-diffractive dijet cross section σ p X jj σjj p X , in the kinematic region ξ<0.1 ξ<0.1 , 0.03<|t|<1GeV 2 0.03<|t|<1GeV2 , with at least two jets with transverse momentum p T >40GeV pT>40GeV , and pseudorapidity |η|<4.4 |η|<4.4 , is 21.7±0.9(stat) +3.0 −3.3 (syst)±0.9(lumi)nb 21.7±0.9(stat)−3.3+3.0(syst)±0.9(lumi)nb . The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of ξ ξ , is presented as a function of x, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for x values in the range −2.9≤log 10 x≤−1.6 −2.9≤log10⁡x≤−1.6 , is R=(σ p X jj /Δξ)/σ jj =0.025±0.001(stat)±0.003(syst) R=(σjj p X /Δξ)/σjj=0.025±0.001(stat)±0.003(syst) , where σ p X jj σjj p X and σ jj σjj are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons

    First Search for Exclusive Diphoton Production at High Mass with Tagged Protons in Proton-Proton Collisions at √s = 13 TeV

    Get PDF

    Erratum to: Measurement of single-diffractive dijet production in proton–proton collisions at s=8TeV\sqrt{s} = 8\,\text {Te}\text {V} with the CMS and TOTEM experiments

    Get PDF

    Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at s = 13 TeV

    Get PDF
    A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses
    corecore