1,847 research outputs found

    Breaking parameter degeneracy in interacting dark energy models from observations

    Full text link
    We study the interacting dark energy model with time varying dark energy equation of state. We examine the stability in the perturbation formalism and the degeneracy among the coupling between dark sectors, the time-dependent dark energy equation of state and dark matter abundance in the cosmic microwave background radiation. Further we discuss the possible ways to break such degeneracy by doing global fitting using the latest observational data and we get a tight constraint on the interaction between dark sectors.Comment: 8 pages, 6 figures, accepted for publication in Phys.Lett.

    The adaptors Grb10 and Grb14 are calmodulin-binding proteins

    Get PDF
    We identified the Grb7 family members, Grb10 and Grb14, as Ca2+-dependent CaM-binding proteins using Ca2+-dependent CaM-affinity chromatography as we previously did with Grb7. The potential CaM-binding sites were identified and experimentally tested using fluorescent-labeled peptides corresponding to these sites. The apparent affinity constant of these peptides for CaM, and the minimum number of calcium ions bound to CaM that are required for effective binding to these peptides were also determined. We prepared deletion mutants of the three adaptor proteins lacking the identified sites and determined that they lost or strongly diminished their CaM-binding capacity following the sequence Grb7 > > Grb14 > Grb10. More than one CaM-binding site and/or accessory CaM-binding sites appear to exist in Grb10 and Grb14, as compared to a single one present in Grb7.Secretaría de Estado de Investigación, Desarrollo e Innovación SAF2011-23494, SAF2014-52048-

    Atom probe tomography of a Cu-doped TiNiSn thermoelectric material : nanoscale structure and optimization of analysis conditions

    Get PDF
    Funding: The Oxford Atom Probe facility is funded by EPSRC (EP/M022803/1) and the Glasgow plasma focused ion beam system was funded by EPSRC grant EP/P001483/1. Thermoelectric materials were developed under joint EPSRC grants EP/N017218/1 and EP/N01717X/1.Cu-doping and crystallographic site occupations within the half-Heusler (HH) TiNiSn, a promising thermoelectric material, have been examined by atom probe tomography. In particular, this investigation aims to better understand the influence of atom probe analysis conditions on the measured chemical composition. Under a voltage-pulsing mode, atomic planes are clearly resolved and suggest an arrangement of elements in-line with the expected HH (F-43m space group) crystal structure. The Cu dopant is also distributed uniformly throughout the bulk material. For operation under laser-pulsed modes, the returned composition is highly dependent on the selected laser energy, with high energies resulting in the measurement of excessively high absolute Ti counts at the expense of Sn and in particular Ni. High laser energies also appear to be correlated with the detection of a high fraction of partial hits, indicating nonideal evaporation behavior. The possible mechanisms for these trends are discussed, along with suggestions for optimal analysis conditions for these and similar thermoelectric materials.PostprintPeer reviewe

    Interacting models may be key to solve the cosmic coincidence problem

    Full text link
    It is argued that cosmological models that feature a flow of energy from dark energy to dark matter may solve the coincidence problem of late acceleration (i.e., "why the energy densities of both components are of the same order precisely today?"). However, much refined and abundant observational data of the redshift evolution of the Hubble factor are needed to ascertain whether they can do the job.Comment: 25 pages, 11 figures; accepted for publication in JCA

    Impact of fractional excretion of sodium on a single morning void urine collection as an estimate of 24-hour urine sodium.

    Get PDF
    The standard for assessing dietary sodium intake is to measure 24-hour urine sodium. On average, 93% of daily sodium intake is excreted over 24-hours. Expense and difficulties in obtaining complete 24-hour collections have led to the measurement of sodium concentration in spot and single-void urine samples, using predictive equations to estimate 24-hour urine sodium. Although multiple predictive equations have been developed, in addition to having an average bias, all the equations overestimate 24-hour sodium at lower levels of 24-hour sodium and underestimate 24-hour urine sodium at higher levels of 24-hour sodium. One of the least biased estimating equations is the INTERSALT equation, which incorporates a spot urine creatinine concentration. The authors hypothesized that differential fractional excretion of sodium (FeNa)(derived from a morning void collection) relative to creatinine would impact on the accuracy of the INTERSALT equation in estimating 24-hour urine sodium. In a prospective study of 139 adults aged 65 years and over, three sequential morning void and 24-hour urine samples were examined. There was a significant correlation between increasing FENa and the difference between estimated and measured 24-hours urine sodium (r = 0.358, P < .01). In the lowest quartile of FENa, the INTERSALT equation overestimated 24-hour urine sodium, but underestimated 24-hour urine sodium with greater magnitude in each of the subsequent quartiles of FENa. Differential excretion of sodium relative to creatinine, potentially impacted by renal blood flow and hydration, among other factors, affected the accuracy of the INTERSALT equation. Additional research may refine the INTERSALT and other predictive equations to increase their accuracy

    Creating the Future

    Get PDF
    “Creating the future” is a notion introduced by Alfred North Whitehead to define the task of universities and the function of philosophy. Implicitly, it is a rejection of the idea that the future is already determined, and in some sense, already exists, with the appearance of temporal becoming an illusion. “Creation” originally meant “the action of causing to exist”, or “a coming into being”. The “future” is not normally considered to be what can be created. Originally, it meant “yet to be”. It now tends to be defined in relation to time, as “the time to come”, where “time” is assumed to be an independent existent along with space as the “containers” of material beings, with the future in some sense pre-existing its becoming present. The quantity of “matter” or “mass-energy” is assumed to be constant and to change its position and configurations in predictable ways over time. To refer to the future as being created is to reject this view of the universe and the basic concepts that define it, replacing these with concepts that can make intelligible the freedom of and creativity of people, the future as in process of being created, and humans as partially responsible for what future is created. It is to recognize that there are real possibilities that can be envisioned, understood, chosen, and brought into existence, with some process philosophers claiming that new possibilities can also be created

    Modelling net-zero emissions energy systems requires a change in approach

    Get PDF
    Energy modelling can assist national decision makers in determining strategies that achieve net-zero greenhouse gas (GHG) emissions. However, three key challenges for the modelling community are emerging under this radical climate target that needs to be recognized and addressed. A first challenge is the need to represent new mitigation options not currently represented in many energy models. We emphasize here the under representation of end-use sector demand-side options due to the traditional supply side focus of many energy models, along with issues surrounding robustness in deploying carbon dioxide removal (CDR) options. A second challenge concerns the types of models used. We highlight doubts about whether current models provide sufficient relevant insights on system feasibility, actor behaviour, and policy effectiveness. A third challenge concerns how models are applied for policy analyses. Priorities include the need for expanding scenario thinking to incorporate a wider range of uncertainty factors, providing insights on target setting, alignment with broader policy objectives, and improving engagement and transparency of approaches. There is a significant risk that without reconsidering energy modelling approaches, the role that the modelling community can play in providing effective decision support may be reduced. Such support is critical, as countries seek to develop new Nationally Determined Contributions and longer-term strategies over the next few years

    Kinetic k-essence ghost dark energy model

    Get PDF
    A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the Universe. In this model, the energy density of ghost dark energy, which comes from the Veneziano ghost of QCD, is proportional to the Hubble parameter, ρD=αH\rho_D=\alpha H. Here α\alpha is a constant of order ΛQCD3\Lambda^3_{QCD} where ΛQCD100MeV\Lambda_{QCD}\sim 100 MeV is the QCD mass scale. We consider a connection between ghost dark energy with/without interaction between the components of the dark sector and the kinetic k-essence field. It is shown that the cosmological evolution of the ghost dark energy dominated Universe can be completely described a kinetic k-essence scalar field. We reconstruct the kinetic k-essence function F(X)F(X) in a flat Friedmann-Robertson-Walker Universe according to the evolution of ghost dark energy density.Comment: 11 pages, 15 figures, some clarifications added in the introduction, added references. Accepted for publication in Phys. Lett.

    Modelling net-zero emissions energy systems requires a change in approach

    Get PDF
    Energy modelling can assist national decision makers in determining strategies that achieve net-zero greenhouse gas (GHG) emissions. However, three key challenges for the modelling community are emerging under this radical climate target that needs to be recognized and addressed. A first challenge is the need to represent new mitigation options not currently represented in many energy models. We emphasize here the under representation of end-use sector demand-side options due to the traditional supply side focus of many energy models, along with issues surrounding robustness in deploying carbon dioxide removal (CDR) options. A second challenge concerns the types of models used. We highlight doubts about whether current models provide sufficient relevant insights on system feasibility, actor behaviour, and policy effectiveness. A third challenge concerns how models are applied for policy analyses. Priorities include the need for expanding scenario thinking to incorporate a wider range of uncertainty factors, providing insights on target setting, alignment with broader policy objectives, and improving engagement and transparency of approaches. There is a significant risk that without reconsidering energy modelling approaches, the role that the modelling community can play in providing effective decision support may be reduced. Such support is critical, as countries seek to develop new Nationally Determined Contributions and longer-term strategies over the next few years

    Tyrosine kinase signalling in breast cancer: Modulation of tyrosine kinase signalling in human breast cancer through altered expression of signalling intermediates

    Get PDF
    The past decade has seen the definition of key signalling pathways downstream of receptor tyrosine kinases (RTKs) in terms of their components and the protein-protein interactions that facilitate signal transduction. Given the strong evidence that links signalling by certain families of RTKs to the progression of breast cancer, it is not surprising that the expression profile of key downstream signalling intermediates in this disease has also come under scrutiny, particularly because some exhibit transforming potential or amplify mitogenic signalling pathways when they are overexpressed. Reflecting the diverse cellular processes regulated by RTKs, it is now clear that altered expression of such signalling proteins in breast cancer may influence not only cellular proliferation (eg Grb2) but also the invasive properties of the cancer cells (eg EMS1/cortactin)
    corecore