597 research outputs found

    Control of magnetic anisotropy by orbital hybridization in (La0.67Sr0.33MnO3)n/(SrTiO3)n superlattice

    Full text link
    The asymmetry of chemical nature at the hetero-structural interface offers an unique opportunity to design desirable electronic structure by controlling charge transfer and orbital hybridization across the interface. However, the control of hetero-interface remains a daunting task. Here, we report the modulation of interfacial coupling of (La0.67Sr0.33MnO3)n/(SrTiO3)n superlattices by manipulating the periodic thickness with n unit cells of SrTiO3 and n unit cells La0.67Sr0.33MnO3. The easy axis of magnetic anisotropy rotates from in-plane (n = 10) to out-of-plane (n = 2) orientation at 150 K. Transmission electron microscopy reveals enlarged tetragonal ratio > 1 with breaking of volume conservation around the (La0.67Sr0.33MnO3)n/(SrTiO3)n interface, and electronic charge transfer from Mn to Ti 3d orbitals across the interface. Orbital hybridization accompanying the charge transfer results in preferred occupancy of 3d3z2-r2 orbital at the interface, which induces a stronger electronic hopping integral along the out-of-plane direction and corresponding out-of-plane magnetic easy axis for n = 2. We demonstrate that interfacial orbital hybridization in superlattices of strongly correlated oxides may be a promising approach to tailor electronic and magnetic properties in device applications

    Current State of Evidence for Medication Treatment of Preschool Internalizing Disorders

    Get PDF
    Psychotropic medications are being prescribed off-label by psychiatrists to treat preschool children diagnosed with internalizing disorders. In this review, the current state of evidence is presented for medications used to treat preschool children (ages 2-5 year olds) diagnosed with anxiety and/or depressive disorders. Eleven studies were systematically identified for this review based on a priori criteria. Overall, the available literature revealed that studies addressing the medication treatment of internalizing disorders in preschoolers are extremely limited and represent relatively weak research methodologies. Given the increasing prevalence of the use of psychotropic medications to treat preschool children and the unique challenges associated with working with this population, it is imperative that mental health practitioners are aware of the current, albeit limited, research on this practice to help make informed treatment decisions. Suggestions about how to monitor potential costs and benefits in those unique cases in which psychopharmacological treatments might be considered for young children are given. Moreover, areas of additional research for this population are discussed

    TRPM2 channel-mediated ROS-sensitive Ca2+ signaling mechanisms in immune cells

    Get PDF
    Transient receptor potential melastatin 2 (TRPM2) proteins form Ca2+-permeable cationic channels that are potently activated by reactive oxygen species (ROS). ROS are produced during immune responses as signaling molecules as well as anti-microbial agents. ROS-sensitive TRPM2 channels are widely expressed in cells of the immune system and located on the cell surface as a Ca2+ influx pathway in macrophages, monocytes, neutrophils, lymphocytes and microglia but preferentially within the lysosomal membranes as a Ca2+ release mechanism in dendritic cells; ROS activation of the TRPM2 channels, regardless of the subcellular location, results in an increase in the intracellular Ca2+ concentrations. Recent studies have revealed that TRPM2-mediated ROS-sensitive Ca2+ signaling mechanisms play a crucial role in a number of processes and functions in immune cells. This mini-review discusses the recent advances in revelation of the various roles the TRPM2 channels have in immune cell functions and the implications in inflammatory diseases

    Plantar fascia segmentation and thickness estimation in ultrasound images

    Get PDF
    Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness

    Much Ado About the TPP’s Effect on Pharmaceuticals

    Get PDF
    Ocular antigens are sequestered behind the blood-retina barrier and the ocular environment protects ocular tissues from autoimmune attack. The signals required to activate autoreactive T cells and allow them to cause disease in the eye remain in part unclear. In particular, the consequences of peripheral presentation of ocular antigens are not fully understood. We examined peripheral expression and presentation of ocular neo-self-antigen in transgenic mice expressing hen egg lysozyme (HEL) under a retina-specific promoter. High levels of HEL were expressed in the eye compared to low expression throughout the lymphoid system. Adoptively transferred naïve HEL-specific CD4+ T cells proliferated in the eye draining lymph nodes, but did not induce uveitis. By contrast, systemic infection with a murine cytomegalovirus (MCMV) engineered to express HEL induced extensive proliferation of transferred naïve CD4+ T cells, and significant uveoretinitis. In this model, wild-type MCMV, lacking HEL, did not induce overt uveitis, suggesting that disease is mediated by antigen-specific peripherally activated CD4+ T cells that infiltrate the retina. Our results demonstrate that retinal antigen is presented to T cells in the periphery under physiological conditions. However, when the same antigen is presented during viral infection, antigen-specific T cells access the retina and autoimmune uveitis ensues

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationships between entities in real-world systems with a simple graph is a standard approach. However, reality is better embraced as several interdependent subsystems (or layers). Recently the concept of a multilayer network model has emerged from the field of complex systems. This model can be applied to a wide range of real-world datasets. Examples of multilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domain of graph visualization there are many systems which visualize datasets having many characteristics of multilayer graphs. This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only for researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well as those developing systems across application domains. We have explored the visualization literature to survey visualization techniques suitable for multilayer graph visualization, as well as tools, tasks, and analytic techniques from within application domains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future research directions for addressing them

    Do Children With Autism Spectrum Disorders Understand Pantomimic Events?

    Get PDF
    SW was supported by grant DEC-2017/01/X/HS2/01722 from the National Science Centre, Poland.Impairments of motor representation of actions have been reported as a core component of autism spectrum disorders (ASD). Individuals with ASD have difficulties in a number of functions such as assuming anticipatory postures, imitating body movements, producing and understanding gestures, and recognizing motor intentions. Such cognitive-motor abilities are all involved in pantomime. However, the available evidence on the production and comprehension of pantomime in individuals with ASD is still inconclusive. The current investigation assessed pantomime comprehension in 40 children with high-functioning ASD and 40 children with typical development balanced for age, IQ, level of formal education, and cognitive profile. The participants were asked to watch video recordings of pantomimes representing simple transitive events enacted by actors and match them to the corresponding pictorial representations. Such pantomimes were delivered in two conditions with different levels of information content (i.e., lean or rich). The two groups of children performed similarly on these tasks. Nonetheless, children with ASD who were administered the pantomimes in the lean condition performed worse than participants who were administered the informatively richer pantomimes. The methodological implications for interpretation of previous findings and future studies are discussed

    Decreased 3D observer variation with matched CT-MRI, for target delineation in Nasopharynx cancer

    Get PDF
    Contains fulltext : 88137.pdf (publisher's version ) (Open Access)PURPOSE: To determine the variation in target delineation of nasopharyngeal carcinoma and the impact of measures to minimize this variation. MATERIALS AND METHODS: For ten nasopharyngeal cancer patients, ten observers each delineated the Clinical Target Volume (CTV) and the CTV elective. After 3D analysis of the delineated volumes, a second delineation was performed. This implied improved delineation instructions, a combined delineation on CT and co-registered MRI, forced use of sagittal reconstructions, and an on-line anatomical atlas. RESULTS: Both for the CTV and the CTV elective delineations, the 3D SD decreased from Phase 1 to Phase 2, from 4.4 to 3.3 mm for the CTV and from 5.9 to 4.9 mm for the elective. There was an increase agreement, where the observers intended to delineate the same structure, from 36 to 64 surface % (p = 0.003) for the CTV and from 17 to 59% (p = 0.004) for the elective. The largest variations were at the caudal border of the delineations but these were smaller when an observer utilized the sagittal window. Hence, the use of sagittal side windows was enforced in the second phase and resulted in a decreased standard deviation for this area from 7.7 to 3.3 mm (p = 0.001) for the CTV and 7.9 to 5.6 mm (p = 0.03) for the CTV elective. DISCUSSION: Attempts to decrease the variation need to be tailored to the specific causes of the variation. Use of delineation instructions multimodality imaging, the use of sagittal windows and an on-line atlas result in a higher agreement on the intended target
    corecore