219 research outputs found

    Slepton mass-splittings as a signal of LFV at the LHC

    Full text link
    Precise measurements of slepton mass-splittings might represent a powerful tool to probe supersymmetric (SUSY) lepton flavour violation (LFV) at the LHC. We point out that mass-splittings of the first two generations of sleptons are especially sensitive to LFV effects involving τμ\tau-\mu transitions. If these mass-splittings are LFV induced, high-energy LFV processes like the neutralino decay {\nt}_2\to\nt_1\tau^{\pm}\mu^{\mp} as well as low-energy LFV processes like τμγ\tau\to\mu\gamma are unavoidable. We show that precise slepton mass-splitting measurements and LFV processes both at the high- and low-energy scales are highly complementary in the attempt to (partially) reconstruct the flavour sector of the SUSY model at work. The present study represents another proof of the synergy and interplay existing between the LHC, i.e. the {\em high-energy frontier}, and high-precision low-energy experiments, i.e. the {\em high-intensity frontier}.Comment: 11 pages, 5 figures. v2: added discussion on backgrounds, added references, version to be published on JHE

    Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw

    Full text link
    We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in χ20~χ10 \chi_2^0\to \tilde \ell \,\ell \to \ell \,\ell\,\chi_1^0 decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Working in the framework of the cMSSM extended by three right-handed neutrino superfields, we conduct a systematic analysis addressing the simultaneous implications of the SUSY seesaw for both high- and low-energy lepton flavour violation. We discuss how the confrontation of slepton mass splittings as observed at the LHC and low-energy LFV observables may provide important information about the underlying mechanism of LFV.Comment: 50 pages, 42 eps Figures, typos correcte

    Gravitational physics with antimatter

    Full text link
    The production of low-energy antimatter provides unique opportunities to search for new physics in an unexplored regime. Testing gravitational interactions with antimatter is one such opportunity. Here a scenario based on Lorentz and CPT violation in the Standard- Model Extension is considered in which anomalous gravitational effects in antimatter could arise.Comment: 5 pages, presented at the International Conference on Exotic Atoms (EXA 2008) and the 9th International Conference on Low Energy Antiproton Physics (LEAP 2008), Vienna, Austria, September 200

    Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry

    Get PDF
    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, this scenario can be tested at high-energy colliders, such as the LHC, and at lower energy experiments that measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section

    Burkholderia cenocepacia BC2L-C Is a Super Lectin with Dual Specificity and Proinflammatory Activity

    Get PDF
    Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-α-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and l-glycero-d-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-α-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-α-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Quorum Sensing Regulation of the Two hcp Alleles in Vibrio cholerae O1 Strains

    Get PDF
    BACKGROUND: The type VI secretion system (T6SS) has emerged as a protein secretion system important to several gram-negative bacterial species. One of the common components of the system is Hcp, initially described as a hemolysin co-regulated protein in a serotype O17 strain of Vibrio cholerae. Homologs to V. cholerae hcp genes have been found in all characterized type VI secretion systems and they are present also in the serotype O1 strains of V. cholerae that are the cause of cholera diseases but seemed to have non-functional T6SS. METHODOLOGY/PRINCIPAL FINDINGS: The serotype O1 V. cholerae strain A1552 was shown to express detectable levels of Hcp as determined by immunoblot analyses using polyclonal anti-Hcp antiserum. We found that the expression of Hcp was growth phase dependent. The levels of Hcp in quorum sensing deficient mutants of V. cholerae were compared with the levels in wild type V. cholerae O1 strain A1552. The expression of Hcp was positively and negatively regulated by the quorum sensing regulators HapR and LuxO, respectively. In addition, we observed that expression of Hcp was dependent on the cAMP-CRP global transcriptional regulatory complex and required the RpoN sigma factor. CONCLUSION/SIGNIFICANCE: Our results show that serotype O1 strains of V. cholerae do express Hcp which is regarded as one of the important T6SS components and is one of the secreted substrates in non-O1 non-O139 V. cholerae isolates. We found that expression of Hcp was strictly regulated by the quorum sensing system in the V. cholerae O1 strain. In addition, the expression of Hcp required the alternative sigma factor RpoN and the cAMP-CRP global regulatory complex. Interestingly, the environmental isolates of V. cholerae O1 strains that showed higher levels of the HapR quorum sensing regulator in comparison with our laboratory standard serotype O1 strain A1552 where also expressing higher levels of Hcp

    Genetic Analysis of Anti-Amoebae and Anti-Bacterial Activities of the Type VI Secretion System in Vibrio cholerae

    Get PDF
    A type VI secretion system (T6SS) was recently shown to be required for full virulence of Vibrio cholerae O37 serogroup strain V52. In this study, we systematically mutagenized each individual gene in T6SS locus and characterized their functions based on expression and secretion of the hemolysin co-regulated protein (Hcp), virulence towards amoebae of Dictyostelium discoideum and killing of Escherichia coli bacterial cells. We group the 17 proteins characterized in the T6SS locus into four categories: twelve (VipA, VipB, VCA0109–VCA0115, ClpV, VCA0119, and VasK) are essential for Hcp secretion and bacterial virulence, and thus likely function as structural components of the apparatus; two (VasH and VCA0122) are regulators that are required for T6SS gene expression and virulence; another two, VCA0121 and valine-glycine repeat protein G 3 (VgrG-3), are not essential for Hcp expression, secretion or bacterial virulence, and their functions are unknown; the last group is represented by VCA0118, which is not required for Hcp expression or secretion but still plays a role in both amoebae and bacterial killing and may therefore be an effector protein. We also showed that the clpV gene product is required for Dictyostelium virulence but is less important for killing E. coli. In addition, one vgrG gene (vgrG-2) outside of the T6SS gene cluster was required for bacterial killing but another (vgrG-1) was not. However, a bacterial killing defect was observed when vgrG-1 and vgrG-3 were both deleted. Several genes encoded in the same putative operon as vgrG-1 and vgrG-2 also contribute to virulence toward Dictyostelium but have a smaller effect on bacterial killing. Our results provide new insights into the functional requirements of V. cholerae's T6SS in the context of secretion as well as killing of bacterial and eukaryotic phagocytic cells

    A Temporal -omic Study of Propionibacterium freudenreichii CIRM-BIA1T Adaptation Strategies in Conditions Mimicking Cheese Ripening in the Cold

    Get PDF
    Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival
    corecore