We study the impact of a type-I SUSY seesaw concerning lepton flavour
violation (LFV) both at low-energies and at the LHC. The study of the di-lepton
invariant mass distribution at the LHC allows to reconstruct some of the masses
of the different sparticles involved in a decay chain. In particular, the
combination with other observables renders feasible the reconstruction of the
masses of the intermediate sleptons involved in χ20→ℓ~ℓ→ℓℓχ10 decays. Slepton mass splittings can be either
interpreted as a signal of non-universality in the SUSY soft breaking-terms
(signalling a deviation from constrained scenarios as the cMSSM) or as being
due to the violation of lepton flavour. In the latter case, in addition to
these high-energy processes, one expects further low-energy manifestations of
LFV such as radiative and three-body lepton decays. Under the assumption of a
type-I seesaw as the source of neutrino masses and mixings, all these LFV
observables are related. Working in the framework of the cMSSM extended by
three right-handed neutrino superfields, we conduct a systematic analysis
addressing the simultaneous implications of the SUSY seesaw for both high- and
low-energy lepton flavour violation. We discuss how the confrontation of
slepton mass splittings as observed at the LHC and low-energy LFV observables
may provide important information about the underlying mechanism of LFV.Comment: 50 pages, 42 eps Figures, typos correcte