466 research outputs found

    The effect of gas phase flame retardants on fire effluent toxicity

    Get PDF
    Standard industry formulations of flame retarded aliphatic polyamides, meeting UL 94 V-0, have been burned under controlled conditions, and the yields of the major asphyxiants, carbon monoxide (CO) and hydrogen cyanide (HCN) have been quantified. Although both the combination of aluminium phosphinate and melamine polyphosphate, and the combination of brominated polystyrene and antimony oxide, inhibit combustion reactions in the gas phase, this study shows that the phosphorus causes a much smaller increase in the CO and HCN yields than antimony-bromine. The mechanisms of CO and HCN generation and destruction are related to the flame inhibition reactions. Both CO and HCN form early in the flame, and the OH radical is critical for their destruction. Crucial, in the context of the flame inhibition mechanism, is the observation that the phosphorus system reduces the H and O radical concentrations without a corresponding decrease in the OH radical concentration; conversely, the bromine system reduces all three of the key radical concentrations, H, O and OH, and thus increases the fire toxicity, by inhibiting decomposition of CO and HCN. Moreover, while the phosphorus flame retardant is effective as an ignition suppressant at lower temperatures (corresponding to early flaming), this is effect “switches off” at high temperatures, minimising the potential increase in fire toxicity, once the fire develops. Since flame retardants are most effective as ignition suppressants, and at the early stages of flaming combustion, while most fire deaths and injuries result from toxic gas inhalation from more developed fires, it is clearly advantageous to have an effective gas phase flame retardant which only causes a small increase in the toxic product yield

    Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality

    Get PDF
    A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2nanoparticles and polymer (PET), and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV) butoxide (Ti(OBu)4) forming nano-TiO2in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites

    Optical and Structural Properties of Ultra-thin Gold Films

    Full text link
    Realizing laterally continuous ultra-thin gold films on transparent substrates is a challenge of significant technological importance. In the present work, formation of ultra-thin gold films on fused silica is studied, demonstrating how suppression of island formation and reduction of plasmonic absorption can be achieved by treating substrates with (3-mercaptopropyl) trimethoxysilane prior to deposition. Void-free fi lms with deposition thickness as low as 5.4 nm are realized and remain structurally stable at room temperature. Based on detailed structural analysis of the fi lms by specular and diffuse X-ray reflectivity measurements, it is shown that optical transmission properties of continuous ultra-thin films can be accounted for using the bulk dielectric function of gold. However, it is important to take into account the non-abrupt transition zone between the metal and the surrounding dielectrics, which extends through several lattice constants for the laterally continuous ultra-thin films (film thickness below 10 nm). This results in a significant reduction of optical transmission, as compared to the case of abrupt interfaces. These findings imply that the atomic-scale interface structure plays an important role when continuous ultra-thin films are considered, e.g., as semi-transparent electrical contacts, since optical transmission deviates significantly from the theoretical predictions for ideal films.Comment: appears in Advanced Optical Materials 201

    Structure, attachment properties, and ecological importance of the attachment system of English ivy (Hedera helix)

    Get PDF
    Root climbers such as English ivy (Hedera helix) rely on specialized adventitious roots for attachment, enabling the plants to climb on a wide range of natural and artificial substrates. Despite their importance for the climbing habit, the biomechanical properties of these specialized adventitious roots compared with standard roots and their performance in the attachment to different host species or inert substrates have not been studied. Here organs and tissues involved in the attachment are characterized and their significance in regard to a broader functional and ecological aspect is discussed. Depending on the substrate, the root clusters show different types of failure modes at various frequencies, demonstrating the close interaction between the climber and its substrates. With a Young’s Modulus of 109.2 MPa, the attachment roots are relatively stiff for non-woody roots. The central cylinders of the attachment roots show a high tensile strength of 38 MPa and a very high extensibility of 34%. In host trees naturally co-distributed with English ivy, a ‘balanced’ occurrence of failure of the attachment system of the climber and the bark of the host is found, suggesting a co-evolution of climber and host. Maximum loads of root clusters normalized by the number of roots match those of individually tested attachment roots. In comparison with most subterranean roots the properties and structure of the attachment roots of English ivy show distinct differences. There exist similarities to the properties found for roots of Galium aparine, suggesting a trend in not fully self-supporting plants towards a higher extensibility

    Role of 20-Hydroxyeicosatetraenoic Acid in Mediating Hypertension in Response to Chronic Renal Medullary Endothelin Type B Receptor Blockade

    Get PDF
    BACKGROUND: The renal medullary endothelin (ET-1) system plays an important role in the control of sodium excretion and arterial pressure (AP) through the activation of renal medullary ET-B receptors. We have previously shown that blockade of endothelin type B receptors (ET-B) leads to salt-sensitive hypertension through mechanisms that are not fully understood. One possible mechanism is through a reduction in renal medullary production of 20-hydroxyeicosatetraenoic acid (20-HETE). 20-HETE, a metabolite of arachidonic acid, has natriuretic properties similar to ET-B activation. While these findings suggest a possible interaction between ET-B receptor activation and 20-HETE production, it is unknown whether blockade of medullary ET-B receptors in rats maintained on a high sodium intake leads to reductions in 20-HETE production. METHODOLOGY/PRINCIPAL FINDINGS: The effect of increasing sodium intake from low (NS = .8%) to high (HS = 8%) on renal medullary production of 20-HETE in the presence and absence of renal medullary ET-B receptor antagonism was examined. Renal medullary blockade of ET-B receptors resulted in salt sensitive hypertension. In control rats, blood pressure rose from 112.8±2.4 mmHg (NS) to 120.7±9.3 mmHg (HS). In contrast, when treated with an ET-B receptor blocker, blood pressure was significantly elevated from 123.7±3.2 (NS) to 164.2±7.1 (HS). Furthermore, increasing sodium intake was associated with elevated medullary 20-HETE (5.6±.8 in NS vs. 14.3±3.7 pg/mg in HS), an effect that was completely abolished by renal medullary ET-B receptor blockade (4.9±.8 for NS and 4.5±.6 pg/mg for HS). Finally, the hypertensive response to intramedullary ET-B receptor blockade was blunted in rats pretreated with a specific 20-HETE synthesis inhibitor. CONCLUSION: These data suggest that increases in renal medullary production of 20-HETE associated with elevating salt intake may be, in part, due to ET-B receptor activation within the renal medulla

    The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering

    Get PDF
    Nearly all cellular and disease related functions of the transcriptional co-activator lens epithelium-derived growth factor (LEDGF/p75) involve tethering of interaction partners to chromatin via its conserved integrase binding domain (IBD), but little is known about the mechanism of in vivo chromatin binding and tethering. In this work we studied LEDGF/p75 in real-time in living HeLa cells combining different quantitative fluorescence techniques: spot fluorescence recovery after photobleaching (sFRAP) and half-nucleus fluorescence recovery after photobleaching (hnFRAP), continuous photobleaching, fluorescence correlation spectroscopy (FCS) and an improved FCS method to study diffusion dependence of chromatin binding, tunable focus FCS. LEDGF/p75 moves about in nuclei of living cells in a chromatin hopping/scanning mode typical for transcription factors. The PWWP domain of LEDGF/p75 is necessary, but not sufficient for in vivo chromatin binding. After interaction with HIV-1 integrase via its IBD, a general protein–protein interaction motif, kinetics of LEDGF/p75 shift to 75-fold larger affinity for chromatin. The PWWP is crucial for locking the complex on chromatin. We propose a scan-and-lock model for LEDGF/p75, unifying paradoxical notions of transcriptional co-activation and lentiviral integration targeting

    The structure of CrgA from Neisseria meningitidis reveals a new octameric assembly state for LysR transcriptional regulators

    Get PDF
    LysR-type transcriptional regulators (LTTRs) form the largest family of bacterial regulators acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes. The LTTR, CrgA, from the human pathogen Neisseria meningitidis, is upregulated during bacterial–host cell contact. Here, we report the crystal structures of both regulatory domain and full-length CrgA, the first of a novel subclass of LTTRs that form octameric rings. Non-denaturing mass spectrometry analysis and analytical ultracentrifugation established that the octameric form of CrgA is the predominant species in solution in both the presence and absence of an oligonucleotide encompassing the CrgA-binding sequence. Furthermore, analysis of the isolated CrgA–DNA complex by mass spectrometry showed stabilization of a double octamer species upon DNA binding. Based on the observed structure and the mass spectrometry findings, a model is proposed in which a hexadecameric array of two CrgA oligomers binds to its DNA target site
    corecore