1,143 research outputs found

    Density-Dependence as a Size-Independent Regulatory Mechanism

    Full text link
    The growth function of populations is central in biomathematics. The main dogma is the existence of density dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the θ\theta-logistic, which generalises the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalises many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter ρ\rho and a competition coefficient θ\theta. Distinct sign combinations of these parameters reproduce not only the family of θ\theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.Comment: 41 Pages, 5 figures Submitted to JT

    The Effect of Diet Quality and Wing Morph on Male and Female Reproductive Investment in a Nuptial Feeding Ground Cricket

    Get PDF
    A common approach in the study of life-history trade-off evolution is to manipulate the nutrient content of diets during the life of an individual in order observe how the acquisition of resources influences the relationship between reproduction, lifespan and other life-history parameters such as dispersal. Here, we manipulate the quality of diet that replicate laboratory populations received as a thorough test of how diet quality influences the life-history trade-offs associated with reproductive investment in a nuptial feeding Australian ground cricket (Pteronemobius sp.). In this species, both males and females make significant contributions to the production of offspring, as males provide a nuptial gift by allowing females to chew on a modified tibial spur during copulation and feed directing on their haemolymph. Individuals also have two distinct wing morphs, a short-winged flightless morph and a long-winged morph that has the ability to disperse. By manipulating the quality of diet over seven generations, we found that the reproductive investment of males and females were affected differently by the diet quality treatment and wing morph of the individual. We discuss the broader implications of these findings including the differences in how males and females balance current and future reproductive effort in nuptial feeding insects, the changing nature of sexual selection when diets vary, and how the life-history trade-offs associated with the ability to disperse are expected to differ among populations

    Oxidative status and fitness components in the Seychelles warbler

    Get PDF
    1. Oxidative damage, caused by reactive oxygen species during aerobic respiration, is thought to be an important mediator of life-history trade-offs. To mitigate oxidative damage, antioxidant defence mechanisms are deployed, often at the cost of resource allocation to other body functions. Both reduced resource allocation to body functions and direct oxidative damage may decrease individual fitness, through reducing survival and/or reproductive output. 2. The oxidative costs of reproduction have gained much attention recently, but few studies have investigated the long-term consequences of oxidative damage on survival and (future) reproductive output under natural conditions. 3. Using a wild population of the cooperatively breeding Seychelles warbler (Acrocephalus sechellensis), we tested the prediction that high levels of reactive oxygen species, or high antioxidant investments to avoid oxidative damage, have fitness consequences because they reduce survival and/or reproductive output. 4. We found that individuals with higher circulating non-enzymatic antioxidant capacity had a lower probability of surviving until the next year. However, neither current reproductive output, nor future reproductive output in the surviving individuals, was associated with circulating non-enzymatic antioxidant capacity or oxidative damage. 5. The negative relationship between antioxidant capacity and survival that we observed concurs with the findings of an extensive comparative study on birds, however the mechanisms underlying this association remain to be resolved

    Killing them softly:managing pathogen polymorphism and virulence in spatially variable environments

    Get PDF
    Understanding why pathogen populations are genetically variable is vital because genetic variation fuels evolution, which often hampers disease control efforts. Here I argue that classical models of evolution in spatially variable environments – specifically, models of hard and soft selection – provide a useful framework to understand the maintenance of pathogen polymorphism and the evolution of virulence. First, the similarities between models of hard and soft selection and pathogen life cycles are described, highlighting how the type and timing of pathogen control measures impose density regulation that may affect both the level of pathogen polymorphism and virulence. The article concludes with an outline of potential lines of future theoretical and experimental work

    The DREEM, part 1: measurement of the educational environment in an osteopathy teaching program

    Get PDF
    Background Measurement of the educational environment has become more common in health professional education programs. Information gained from these investigations can be used to implement and measure changes to the curricula, educational delivery and the physical environment. A number of questionnaires exist to measure the educational environment, and the most commonly utilised of these is the Dundee Ready Educational Environment Measure (DREEM). Methods The DREEM was administered to students in all year levels of the osteopathy program at Victoria University (VU), Melbourne, Australia. Students also completed a demographic survey. Inferential and correlational statistics were employed to investigate the educational environment based on the scores obtained from the DREEM. Results A response rate of 90% was achieved. The mean total DREEM score was 135.37 (+/- 19.33) with the scores ranging from 72 to 179. Some subscales and items demonstrated differences for gender, clinical phase, age and whether the student was in receipt of a government allowance. Conclusions There are a number of areas in the program that are performing well, and some aspects that could be improved. Overall students rated the VU osteopathy program as more positive than negative. The information obtained in the present study has identified areas for improvement and will enable the program leaders to facilitate changes. It will also provide other educational institutions with data on which they can make comparisons with their own programs

    Are coral reefs victims of their own past success?

    Get PDF
    Copyright © 2016, The Authors . This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.Copyright © 2016, The Authors

    Quantitative genetics of immunity and life history under different photoperiods

    Get PDF
    Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality

    What are the evolutionary constraints on larval growth in a trophically transmitted parasite?

    Get PDF
    For organisms with a complex life cycle, a large larval size is generally beneficial, but it may come at the expense of prolonged development. Individuals that grow fast may avoid this tradeoff and switch habitats at both a larger size and younger age. A fast growth rate itself can be costly, however, as it requires greater resource intake. For parasites, fast larval growth is assumed to increase the likelihood of host death before transmission to the next host occurs. Using the tapeworm Schistocephalus solidus in its copepod first intermediate host, I investigated potential constraints in the parasite’s larval life history. Fast-growing parasites developed infectivity earlier, indicating there is no functional tradeoff between size and developmental time. There was significant growth variation among full-sib worm families, but fast-growing sibships were not characterized by lower host survival or more predation-risky host behavior. Parental investment also had little effect on larval growth rates. The commonly assumed constraints on larval growth and development were not observed in this system, so it remains unclear what prevents worms from exploiting their intermediate hosts more aggressively

    Consequences of sexual selection for fisheries-induced evolution: an exploratory analysis

    Get PDF
    Reproductive behaviour and mating system complexity may influence fisheries-induced evolution. Mate choice and intrasexual competition might favour late-, large-maturing genotypes in contrast to the selection imposed by many fisheries. Here, we simulate changes to the mean and variance in body size of Atlantic cod (Gadus morhua) concomitant with increased fishing intensity. Comparing selection differentials (S) for length under the assumptions that size does and does not affect reproductive success, we find that the strength of selection for smaller body size associated with increased fishing pressure depends on: (i) the initial variance in body size; (ii) changes to the variance in size with increasing fishing intensity; and (iii) the influence of size on reproductive success. If the initial variability in length is sufficiently high and its coefficient of variation (CV) increases with fishing intensity, the predicted evolutionary shift towards smaller size generated by fishing is less than that expected under the assumption that reproductive success is independent of size. However, if size influences reproduction and if the CV in body size declines as fishing pressure increases, a trend that may be characteristic of many intensively exploited populations, the strength of selection for smaller size is predicted to be comparatively rapid. We conclude that fisheries-induced evolution can be influenced by changes to the mean and variance of traits under sexual selection, and that the benefits of maintaining broad phenotypic variability in traits such as body size may be greater than previously thought
    corecore