745 research outputs found
Reliability assessment of null allele detection: inconsistencies between and within different methods
Microsatellite loci are widely used in population genetic studies, but the presence of null alleles may lead to biased results. Here we assessed five methods that indirectly detect null alleles, and found large inconsistencies among them. Our analysis was based on 20 microsatellite loci genotyped in a natural population of Microtus oeconomus sampled during 8 years, together with 1200 simulated populations without null alleles, but experiencing bottlenecks of varying duration and intensity, and 120 simulated populations with known null alleles. In the natural population, 29% of positive results were consistent between the methods in pairwise comparisons, and in the simulated dataset this proportion was 14%. The positive results were also inconsistent between different years in the natural population. In the null-allele-free simulated dataset, the number of false positives increased with increased bottleneck intensity and duration. We also found a low concordance in null allele detection between the original simulated populations and their 20% random subsets. In the populations simulated to include null alleles, between 22% and 42% of true null alleles remained undetected, which highlighted that detection errors are not restricted to false positives. None of the evaluated methods clearly outperformed the others when both false positive and false negative rates were considered. Accepting only the positive results consistent between at least two methods should considerably reduce the false positive rate, but this approach may increase the false negative rate. Our study demonstrates the need for novel null allele detection methods that could be reliably applied to natural population
Proteomic Analysis Reveals Age-related Changes in Tendon Matrix Composition, with Age- and Injury-specific Matrix Fragmentation
Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury. The aim of this study was, therefore, to assess the protein profile of normal SDFTs from young and old horses using label-free relative quantification to identify differentially abundant proteins and peptide fragments between age groups. The protein profile of injured SDFTs from young and old horses was also assessed. The results demonstrate distinct proteomic profiles in young and old tendon, with alterations in the levels of proteins involved in matrix organization and regulation of cell tension. Furthermore, we identified several new peptide fragments (neopeptides) present in aged tendons, suggesting that there are age-specific cleavage patterns within the SDFT. Proteomic profile also differed between young and old injured tendon, with a greater number of neopeptides identified in young injured tendon. This study has increased the knowledge of molecular events associated with tendon aging and injury, suggesting that maintenance and repair of tendon tissue may be reduced in aged individuals and may help to explain why the risk of injury increases with aging
Indicators of pulmonary exacerbation in cystic fibrosis: A Delphi survey of patients and health professionals
Background: There is uncertainty about the most important indicators of pulmonary exacerbations in CF.
Methods: Two parallel Delphi surveys in 13 CF centres (UK and Ireland). Delphi 1: 31 adults with CF, ≥ one exacerbation over 12 months. Delphi 2: 38 CF health professionals. Rounds 1 and 2 participants rated their level of agreement with statements relating to indicators of exacerbation; Round 3 participants rated the importance of statements which were subsequently placed in rank order.
Results: Objective measurements were of higher importance to health professionals. Feelings of increased debility were rated most important by adults with CF.
Conclusions: There were clear differences in perspectives between the two groups as to the most important indicators of an exacerbation. This highlights that CF health professionals should take more cognisance of specific signs and symptoms reported by adults with CF, especially since these may be a precursor to an exacerbation
Histopathological and immunohistochemical evaluation of cellular response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch for tendon repair
We investigated endogenous tissue response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch intended for tendon repair. A sheep tendon injury model characterised by a natural history of consistent failure of healing was chosen to assess the biological potential of woven and aligned electrospun fibres to induce a reparative response. Patches were implanted into 8 female adult English Mule sheep. Significant infiltration of tendon fibroblasts was observed within the electrospun component of the patch but not within the woven component. The cellular infiltrate into the electrospun fibres was accompanied by an extensive network of new blood vessel formation. Tendon fibroblasts were the most abundant scaffold-populating cell type. CD45+, CD4+ and CD14+ cells were also present, with few foreign body giant cells. There were no local or systemic signs of excessive inflammation with normal hematology and serology for inflammatory markers three months after scaffold implantation. In conclusion, we demonstrate that an endogenous healing response can be safely induced in tendon by means of biophysical cues using a woven and electrospun patch
Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model
Abstract Background Mesenchymal stromal cells (MSC) have shown promising results in the treatment of tendinopathy in equine medicine, making this therapeutic approach seem favorable for translation to human medicine. Having demonstrated that MSC engraft within the tendon lesions after local injection in an equine model, we hypothesized that they would improve tendon healing superior to serum injection alone. Methods Quadrilateral tendon lesions were induced in six horses by mechanical tissue disruption combined with collagenase application 3 weeks before treatment. Adipose-derived MSC suspended in serum or serum alone were then injected intralesionally. Clinical examinations, ultrasound and magnetic resonance imaging were performed over 24 weeks. Tendon biopsies for histological assessment were taken from the hindlimbs 3 weeks after treatment. Horses were sacrificed after 24 weeks and forelimb tendons were subjected to macroscopic and histological examination as well as analysis of musculoskeletal marker expression. Results Tendons injected with MSC showed a transient increase in inflammation and lesion size, as indicated by clinical and imaging parameters between week 3 and 6 (p < 0.05). Thereafter, symptoms decreased in both groups and, except that in MSC-treated tendons, mean lesion signal intensity as seen in T2w magnetic resonance imaging and cellularity as seen in the histology (p < 0.05) were lower, no major differences could be found at week 24. Conclusions These data suggest that MSC have influenced the inflammatory reaction in a way not described in tendinopathy studies before. However, at the endpoint of the current study, 24 weeks after treatment, no distinct improvement was observed in MSC-treated tendons compared to the serum-injected controls. Future studies are necessary to elucidate whether and under which conditions MSC are beneficial for tendon healing before translation into human medicine
Isolation and Characterization of Sixteen Polymorphic Microsatellite Loci in the Golden Apple Snail Pomacea canaliculata
We report the characterization of 16 polymorphic microsatellite markers in the golden apple snail, Pomacea canaliculata, a pest registered in the list of “100 of the world’s worst invasive alien species”. The fast isolation by AFLP (Amplified Fragment Length Polymorphism) of sequences containing repeats (FIASCO) method was used to isolate microsatellite loci, and polymorphism was explored with 29 individuals collected in an invasive region from China. These primers showed a number of alleles per locus ranging from three to 13. The ranges of observed and expected heterozygosity were 0.310–0.966 and 0.523–0.898, respectively. These microsatellite markers described here will be useful for population genetic studies of P. canaliculata
Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer's disease.
Protein aggregation likely plays a key role in the initiation and spreading of Alzheimer's disease pathology through the brain. Soluble aggregates of amyloid beta are believed to play a key role in this process. However, the aggregates present in humans are still poorly characterized due to a lack of suitable methods required for characterizing the low concentration of heterogeneous aggregates present. We have used a variety of biophysical methods to characterize the aggregates present in human Alzheimer's disease brains at Braak stage III. We find soluble amyloid beta-containing aggregates in all regions of the brain up to 200 nm in length, capable of causing an inflammatory response. Rather than aggregates spreading through the brain as disease progresses, it appears that aggregation occurs all over the brain and that different brain regions are at earlier or later stages of the same process, with the later stages causing increased inflammation
A Geological Service for Europe: building trust through interdisciplinary and intersectoral collaboration
ABSTRACT: Geology encompasses all of the Earth sciences and thus is multidisciplinary. It does not respect geopolitical borders, so requires teamwork across disciplines and between nations. Applying geological solutions to climate change increasingly requires transdisciplinary teamwork. This extends well beyond the geosciences to inform on issues of universal concern, e.g., deployment of renewable energy, management of groundwater resources, mitigation of climate-induced geohazards, and more. To achieve sustainability and success in these fields, it is essential to employ knowledge of subsurface, land, and subsea geology for the discovery, tracking, preservation, regulation, and exploitation of resources. This knowledge also supports integrated and coherent surface and subsurface spatial planning and the creation of cohesive laws guided by scientific insights. This in turn requires multi-stakeholder collaboration between scientific and governmental agencies, industry, and civil society, from research design to data and knowledge application. Such a broad spectrum of engagement is at the heart of the concept of a Geological Service for Europe, founded on a long history of collaboration between the Geological Surveys of Europe –extending networks, fostering innovation, sharing knowledge, building capacity and common standards. Given the current lack of public knowledge and negative perceptions of geology, collaborative efforts based on objective science can have a significant impact on building trust. This contribution highlights the collaboration of the Geological Surveys of Europe with non-geoscientific partners in serving society, supporting nature, and delivering the Green Deal.info:eu-repo/semantics/publishedVersio
Accurate rapid averaging of multihue ensembles is due to a limited capacity subsampling mechanism
It is claimed that the extraction of average features from rapidly presented ensembles is holistic, with attention distributed across the whole set. We investigated whether observers’ extraction of mean hue is holistic or could reflect subsampling. Analysis of selections for the mean hue revealed a distribution that peaked at the expected mean hue. However, an ideal observer simulation suggested that a subsampling mechanism incorporating just two items from each ensemble would suffice to reproduce the precision of most observers. The results imply that hue may not be averaged as holistically and efficiently as other attributes
Tendon Extracellular Matrix Damage, Degradation and Inflammation in Response to In Vitro Overload Exercise
This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.Wellcome Trust; Grant number: WT087112;
Grant sponsor: Arthritis Research UK; Grant number: 2026
- …