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Abstract 23 

 Microsatellite loci are widely used in population genetic studies, but the presence of 24 

null alleles may lead to biased results. Here we assessed five methods that indirectly detect 25 

null alleles, and found large inconsistencies among them. Our analysis was based on 20 26 

microsatellite loci genotyped in a natural population of Microtus oeconomus sampled during 8 27 

years, together with 1200 simulated populations without null alleles, but experiencing 28 

bottlenecks of varying duration and intensity, and 120 simulated populations with known null 29 

alleles. In the natural population, 29% of positive results were consistent between the methods 30 

in pairwise comparisons, and in the simulated dataset this proportion was 14%. The positive 31 

results were also inconsistent between different years in the natural population. In the null-32 

allele-free simulated dataset, the number of false positives increased with increased bottleneck 33 

intensity and duration. We also found a low concordance in null allele detection between the 34 

original simulated populations and their 20% random subsets. In the populations simulated to 35 

include null alleles, between 22% and 42% of true null alleles remained undetected, which 36 

highlighted that detection errors are not restricted to false positives. None of the evaluated 37 

methods clearly outperformed the others when both false positive and false negative rates 38 

were considered. Accepting only the positive results consistent between at least two methods 39 

should considerably reduce the false positive rate, but this approach may increase the false 40 

negative rate. Our study demonstrates the need for novel null allele detection methods that 41 

could be reliably applied to natural populations. 42 

 43 

 44 
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Introduction 45 

 Highly polymorphic microsatellite markers are widely applied in population genetic 46 

studies since their discovery in the late 1980s. The improvement of polymerase chain reaction 47 

(PCR) and sequencing technologies allowed the use of these molecular markers to spread fast 48 

and wide into many research fields (see Guichoux et al. 2011 for review). However, the 49 

potential occurrence of "null alleles", i.e. alleles that fail to amplify during the PCR, creates a 50 

disadvantage in using these markers (Oddou-Muratorio et al. 2009). A null allele occurs when 51 

an incompatibility between any of the two locus–specific primers and its complementary 52 

target region causes the PCR amplification of an allele to fail. Such incompatibilities may be 53 

caused by mutations in the primer target region within one species, or between different 54 

species (in case of cross-species amplification) (Callen et al. 1993, Primmer et al. 1995, Jarne 55 

& Lagoda 1996). In some cases, long alleles may amplify much less efficiently then shorter 56 

ones, and therefore may appear as null alleles (Wattier et al. 1998). Low template 57 

quality/quantity can also result in the absence of amplification product and may be interpreted 58 

as the presence of a null allele (Garcia de Leon et al. 1998). 59 

 Null alleles have been reported in many species, e.g. humans (Callen et al. 1993), 60 

deers (Pemberton et al. 1995), bears (Paetkau & Strobeck 1995), voles (Ishibashi et al. 1996), 61 

fish (McCoy et al. 2001), crayfish (Walker et al. 2002), and oystercatchers (Van Treuren 62 

1998). The detection of null alleles is an important step in population genetic data analysis, as 63 

their presence may strongly bias the estimates of population genetics parameters (Pemberton 64 

et al. 1995, Chapuis & Estoup 2007). For example, the accuracy of assignment of individuals 65 

to populations may be reduced and FST significantly overestimated (Carlsson 2008). The 66 
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presence of null alleles may also lead to an incorrect exclusion of a significant number of true 67 

parents in parentage analyses (Dakin & Avise 2004). Despite this, very few studies on 68 

population genetic structure and genetic parentage report estimates of null allele frequencies 69 

in their data (see Dakin & Avise 2004 for review). 70 

 Several methods for null allele estimation are currently available (Dempster et al. 71 

1977, Chakraborty et al. 1992, Brookfield 1996, Summers & Amos 1997, Kalinowski & Taper 72 

2006). They are based on comparing observed and expected heterozygosity for each locus to 73 

identify loci with significant heterozygote deficit. This approach is based on the fact that a 74 

heterozygous locus with a null allele would be scored as a homozygote, since only the visible 75 

allele is detected. Crucially, all these methods assume that a population is in Hardy-Weinberg 76 

Equilibrium (HWE), and that all observed deviations towards heterozygote deficit result from 77 

the presence of null alleles. The main difference between these methods lies in the way blank 78 

results (i.e. individuals without any detectable PCR product at a particular locus) are 79 

interpreted. Some methods consider blank results as null allele homozygotes, while others 80 

classify them as PCR failures resulting from low DNA quality or human errors; some methods 81 

attempt to differentiate between these two cases (see Supplementary Material for details). 82 

Another difference lies in the approaches used for null allele frequency estimation. While the 83 

estimates of Chakraborty et al. (1992) and Brookfield (1996) are obtained analytically, 84 

estimates of Dempster et al. (1977), Summers & Amos (1997), and Kalinowski & Taper 85 

(2006) are achieved through iterative optimisation (see Supplementary Material for details). 86 

 The above methods showed good to moderate accuracy in estimating frequencies of 87 

known null alleles in populations simulated assuming HWE (Kalinowski & Taper 2006, 88 
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Chapuis & Estoup 2007). Specifically, Kalinowski & Taper (2006) demonstrated that their 89 

method performs better than the methods of Chakraborty et al. (1992) and Summers & Amos 90 

(1997), while Chapuis & Estoup (2007) showed that the method of Dempster et al. (1977) 91 

performs better than the methods of Chakraborty et al. (1992) and Brookfield (1996). 92 

However, Chapuis & Estoup (2007) also showed that the three methods they tested performed 93 

worse when applied to two empirical datasets from natural populations, where the presence of 94 

null alleles was confirmed by their successful amplification after the primers were re-95 

designed. Moreover, in one of these populations heterozygote deficit remained significant 96 

even after the null allele was successfully amplified with the new primers. Although this result 97 

was attributed to the presence of additional null alleles (Chapuis & Estoup 2007), the 98 

observed heterozygote deficit could have resulted from other factors such as small sample 99 

size, high inbreeding levels, or immigration. 100 

The assumption of HWE, common among the methods described above, can be 101 

problematic when estimating null alleles in microsatellites scored from natural populations, 102 

since natural populations never strictly comply with the assumptions of Hardy-Weinberg law 103 

(i.e. infinite size, random mating, lack of mutations, migration and natural selection). 104 

Crucially, some of the factors causing deviations from HWE also lead to heterozygote deficit, 105 

namely inbreeding, assortative mating, population structure or immigration from a genetically 106 

distinct source (Wahlund effect), and disruptive selection (Avise 2004). Heterozygote deficit 107 

generated by such population mechanisms may be interpreted as the presence of null alleles, 108 

thus leading to false positives. On the other hand, phenomena such as disassortative mating or 109 

balancing selection can lead to heterozygote excess, which may result in failure to detect true 110 
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null alleles. The effect of other population genetic processes is less obvious. For example, a 111 

bottleneck leads to loss of alleles and decline in heterozygosity, but at least under some 112 

conditions it may also lead to temporary heterozygote excess (Cornuet & Luikart 1996). 113 

Fluctuations in population size, especially if associated with immigration during the growth 114 

phase, may lead to temporal fluctuations between heterozygote excess and deficit. In addition, 115 

taking a small subsample from a population (which also effectively occurs during founder 116 

events) may result in heterozygote deficit in some loci and heterozygote excess in others, due 117 

to the stochasticity of the sampling procedure. This may lead to detection of false null alleles 118 

in loci with heterozygote deficit. 119 

Many population genetic studies are based on small sample sizes, and in many cases, 120 

study populations themselves are small (and therefore subject to strong drift), fluctuate in size, 121 

and exhibit considerable deviations from random mating. Such populations do not comply 122 

with the assumption that heterozygote deficit results solely from the presence of null alleles. 123 

However, the methods assuming HWE are commonly applied to such cases (e.g. see the 124 

review by Dakin & Avise 2004). In this study, we address the problem of detecting null alleles 125 

in populations that undergo demographic changes and deviate from HWE, and we assess 126 

reliability of the five widely used methods (Dempster et al. 1977, Chakraborty et al. 1992, 127 

Brookfield 1996, Summers & Amos 1997, Kalinowski & Taper 2006) in such non-equilibrium 128 

conditions. For this purpose, we apply these methods to a natural population of root vole, 129 

Microtus oeconomus, which was sampled over an eight-year period, and underwent 130 

substantial density fluctuations during this time. Additionally, in order to test whether 131 

population-level factors may lead to the detection of false null alleles, we analysed 1200 132 
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simulated populations without null alleles, but affected by a bottleneck with varying levels of 133 

intensity and duration. 134 

 135 

Materials and Methods 136 

Analysed datasets 137 

 We analysed 20 nuclear microsatellite loci in a population of  root vole, Microtus 138 

oeconomus, which was extensively sampled over an eight-year period, and underwent a 7.7-139 

fold change in average density during this time. Detailed information about demography and 140 

genetic variability of this population obtained from previous studies (Gliwicz & Jancewicz 141 

2004, Gliwicz & Dąbrowski 2008, Dąbrowski 2010, Pilot et al. 2010) allowed us to follow 142 

temporal changes in the estimated null allele frequencies and compare different methods of 143 

their detection.  144 

In order to assess the effect of demographic changes and resulting population genetic 145 

changes on null allele detection rates under controlled conditions (i.e. with known - rather 146 

than estimated – genetic composition and demographic history), we simulated 1200 147 

populations without null alleles, but with varying level and duration of a bottleneck. The 148 

simulated data allowed us to explore the effect of demographic changes on inconsistencies in 149 

null allele detection that were observed in the natural population. In addition, we created 20% 150 

subsets of the simulated populations by random sampling, to assess the effect of population 151 

sub-sampling on null allele detection. Finally, we introduced null alleles into the earlier 152 

simulated populations in order to (1) assess the performance of each method of null allele 153 

estimation in detecting known null alleles, and (2) assess the empirical relationship between 154 



 

8 

 

 

 

 

 

the frequency of null alleles and the frequency of null allele homozygotes in non-equilibrium 155 

populations. 156 

We used two general approaches for null allele detection. The first approach was based 157 

on methods assessing heterozygote deficit, as described above (Dempster et al. 1977, 158 

Chakraborty et al. 1992, Brookfield 1996, Summers & Amos 1997, Kalinowski & Taper 159 

2006). We applied this approach to both the natural population and the simulated populations. 160 

The second approach was based on the comparison of genotypes between parent-offspring 161 

pairs, and was included here as the method that does not assume HWE. However, it could be 162 

only applied to the natural population. 163 

 164 

Sample collection from the natural population 165 

The natural population studied was a wild population of the root vole inhabiting a river 166 

valley located in a strict reserve of Białowieża National Park in north-eastern Poland. The 1-167 

ha field plot was situated on a vast open sedgeland, and was exposed to seasonal flooding. 168 

The root vole is a small rodent with a maximum life span of 18 months (3 months on 169 

average). In the studied population, individuals were reproductively active usually only for 170 

one breeding season. We used a catch-mark-release (CMR) method, with at least three 171 

trapping sessions carried out each year, using 100 live traps placed in a grid of 10 by 10 m. 172 

Mean trapping efficiency was over 90% of all individuals present on the plot (Pilot et al. 173 

2010). The population underwent substantial density changes over the study period, with 174 

average annual densities ranging from 9 to 69 individuals per hectare as estimated in MARK 175 

software, and no individuals trapped in 2007 (Dąbrowski 2010). Such density fluctuations 176 
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affected kin structure in the population and could be responsible for deviations from HWE 177 

detected in some years (Pilot et al. 2010). 178 

We collected tissue samples for genetic analysis from 94% (739) of the individuals 179 

marked from 2000-2008, including 13 recaptures (originally marked in a previous year and 180 

re-trapped in the next year; these samples were not duplicated in the genetic analyses). The 181 

annual numbers of sampled individuals are presented in Table 1. 182 

 183 

Microsatellite genotyping in the wild root vole population 184 

Protocols for DNA extraction and microsatellite genotyping are described in detail in the 185 

Supplementary Material. One crucial information to convey here is that there were no blank 186 

results in this dataset, i.e. no individuals had missing data at any locus. Tissue samples were 187 

obtained as biopsies and immediately stored in ethanol, which allowed us to work only with 188 

DNA of good quality. PCR amplification was done using high-quality Taq polymerase 189 

(included in QIAGEN Multiplex PCR Kit), and PCR reactions were repeated up to four times 190 

for samples that initially failed (see Supplementary Material for details). This allowed us to 191 

eliminate any missing data that could have resulted from low quality DNA, human errors and 192 

PCR reagent failures. None of these steps would, however, eliminate missing data resulting 193 

from the presence of null allele homozygotes. Given that our dataset did not contain any 194 

missing data, we can state with a high confidence that no null allele homozygotes existed in 195 

our dataset, which implies that null alleles, if present in this dataset, would only occur in low 196 

frequencies. 197 

 198 
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Genetic diversity and null allele detection in the natural population 199 

Genetic diversity estimates for the root vole population, including the number of 200 

alleles per locus (N), observed (HO) and expected (HE) heterozygosity, mean polymorphic 201 

information content (PIC) and exclusion probability for the first parent (ExP(1)) were 202 

calculated in CERVUS 3.0 (Marshall et al. 1998), while departures from HWE were estimated 203 

for each locus in GENEPOP v 4.0.10 (Rousset 2008) (Supplementary Table 1). 204 

We tested for the presence of null alleles for each year separately using five different 205 

methods: (1) the maximum likelihood (ML) estimator based on observed and expected 206 

heterozygosities described by Chakraborty at al. (1992) with the modification of Brookfield 207 

(1996) which accounts for the presence of null allele homozygotes, as implemented in 208 

MICRO-CHECKER 2.2.1 (van Oosterhout et al. 2004); (2) the ML estimator using chi-square 209 

goodness-of-fit, accounting for the presence of null allele homozygotes during optimization 210 

rounds (Summers & Amos 1997), as implemented in CERVUS 3.0; (3) the ML estimator 211 

accounting for genotyping errors implemented in ML-NullFreq (Kalinowski & Taper 2006); 212 

(4) the ML method using iterative EM (expectation and maximization) of Dempster at al. 213 

(1977) implemented in GENEPOP v4.0.10.; (5) a method based on the comparison of 214 

genotypes of parent-offspring pairs. The algorithms applied in each method (Dempster et al. 215 

1977, Chakraborty et al. 1992, Brookfield 1996, Summers & Amos 1997, Kalinowski & Taper 216 

2006) are described in the Supplementary Material. Hereafter the five methods will be 217 

referred to by the names of the software packages that implement them, namely MICRO-218 

CHECKER, CERVUS, ML-NullFreq, GENEPOP, and parent-offspring method. As a result of 219 

testing our datasets using these methods, we obtained a binary response variable (presence-220 
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absence of null alleles) for each of the 20 loci and each of the five methods tested. In addition, 221 

we tested for the presence of null alleles for the entire dataset with all years pooled (genotypes 222 

of recaptured individuals were not duplicated; see Supplementary Material and 223 

Supplementary Table 2). 224 

The application of the parent-offspring method to the root vole population was 225 

possible since a careful reconstruction of its kin structure was available from earlier studies 226 

(Dąbrowski 2010, Pilot et al. 2010, see Supplementary Material). The program CERVUS 227 

allows for a small number of mismatches between parent and offspring genotypes, if the 228 

probability of the estimated relationship is high based on the conformity of the remaining loci. 229 

Therefore, we could use mismatching loci to detect putative null alleles. We created a list of 230 

parent-offspring pairs based on the results of the previous studies on this population 231 

(Dąbrowski 2010, Pilot et al. 2010). The average rate of mismatches between parental and 232 

offspring genotypes estimated using error rate analysis implemented in CERVUS was 0.08 (SD 233 

= 0.097). Presence of a null allele in a locus was reported only if the observed mismatch in a 234 

parent-offspring pair fitted the pattern expected by the presence of a null allele. For example, 235 

if a female with genotype AB at a particular locus mates with a male with genotype CN 236 

(where N is a null allele), 50% of their offspring are expected to have genotypes with this null 237 

allele (either AN or BN). Visible genotypes of the father (CC) and the offspring (AA, BB) will 238 

be inconsistent with the father-offspring relationship, therefore creating a mismatch at this 239 

locus. In contrast to the methods based on the heterozygote deficit, the parent-offspring 240 

method does not require the assumption of HWE.  241 

The parent-offspring method could not be applied to the entire dataset, but only to 242 
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closely related individuals, which reduced the sample size to 511 parent-offspring pairs. In 243 

contrast, the other four methods were tested using all sampled individuals. Due to smaller 244 

sample size, the parent-offspring method may detect fewer null alleles compared with the 245 

other methods. However, if each method detects null alleles correctly, the null alleles detected 246 

by the parent-offspring method should be confirmed by the other methods. 247 

 248 

Generation and analysis of simulated datasets 249 

 Using SPAms (Parreira et al. 2009), we simulated 1200 populations, each comprised 250 

of 100 individuals with 20 loci. The reason for generating this data was to test the way 251 

bottlenecks affect the detection of putative null alleles. In order to do this, the one population 252 

size change model with instantaneous size change was applied with the following options: 253 

ancestral pop effective diploid size: 100,000; present pop diploid size (six variants): (1) 254 

99,999, (2) 50,000, (3) 25,000, (4) 10,000, (5) 5,000, (6) 2,500; duration of event (four 255 

variants): 3, 30, 300, 3000 generations; and mutation rate: 0.0001. The first size change 256 

variant (from 100,000 to 99,999 individuals) was used as a control, where bottleneck effect 257 

was not present. Each combination of the population size change (from ancestral to present 258 

number of individuals) and time of this event was simulated in 50 replicates. In all 1200 259 

simulated populations the presence of putative null alleles was tested using four programs: 260 

CERVUS, GENEPOP, MICRO-CHECKER and ML-NullFreq. Genetic diversity in the simulated 261 

populations was estimated using the same methods as for the natural population of root voles 262 

(see above).  263 

To test the effect of random sampling on null allele detection, we randomly selected 264 
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10% (n = 120) of the simulated populations, and from each of them we randomly sampled 265 

20% of individuals. This simulated the effects of three different real life scenarios: (A) 266 

estimation of null allele frequencies based on a subset of individuals sampled from a 267 

population, (B) founder effect, or (C) sudden change in number of individuals within one 268 

breeding season. We tested for the presence of null alleles in each original population (n = 100 269 

individuals) and its random subset (n = 20 individuals, i.e. a 20% subset) separately. Then we 270 

considered only the loci with null alleles detected in at least one of the original populations or 271 

their subsets. For these populations, we calculated the Kendall's coefficient of concordance as 272 

a measure of similarity of null allele detection between the original and the subset 273 

populations. 274 

For the next analysis, we selected 120 out of 1200 populations simulated in SPAmp, in 275 

which no null alleles (false positives) were detected by any method. This set included 276 

populations that underwent all levels of the simulated bottleneck. Then, we simulated the 277 

presence of two null alleles in each of these 120 populations using NullAlleleGenerator 278 

(http://www.lcb.uu.se/papers/dabrowski/NullAlleleGenerator.zip). NullAlleleGenerator randomly 279 

selected a locus (out of the 20 loci simulated) and changed one random allele into a null 280 

allele. This procedure was repeated for two loci, thus simulating two null alleles per 281 

population. Whenever genotyped in heterozygous form, the allele selected as the null allele 282 

was replaced by the other allele from that locus. Whenever occurring in a homozygous state, 283 

the simulated null allele was marked as a blank result (missing data). This way we obtained 284 

populations with true known null alleles, for which we assessed the performance of CERVUS, 285 

GENEPOP, MICRO-CHECKER and ML-NullFreq in detecting null alleles. 286 

http://www.lcb.uu.se/papers/dabrowski/NullAlleleGenerator.zip
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Finally, we repeated the previously described procedure of simulating two null alleles 287 

per population for the second time, but unlike in the first case, this time the 120 populations 288 

were selected randomly. In this analysis, we checked the relationship between the frequency 289 

of simulated null alleles and the frequency of null allele homozygotes. In a population under 290 

HWE, the expected frequency of a null allele homozygote is p
2
, where p is the frequency of 291 

the respective null allele. However, here we simulated populations that underwent a 292 

bottleneck, and thus many of them deviated from HWE. Therefore, we checked empirically 293 

how the frequency of null allele homozygotes depended on the frequency of null alleles. This 294 

was needed for the interpretation of the lack of null allele homozygotes in the natural 295 

population we studied (which also deviated from HWE and underwent substantial 296 

demographic fluctuations). 297 

 298 

Statistical analysis 299 

In order to investigate the presence/absence of null alleles in a particular locus in 300 

subsequent years, we applied a generalized linear mixed model (GLMM) with binomial error 301 

distribution, and logit link function. We used this approach because several parameters can 302 

potentially affect null allele presence and these parameters need to be included within one 303 

statistical design. Moreover, as the study covers different years and different loci, both year 304 

effect and loci effect have to be included as random variables to avoid pseudoreplications. We 305 

thus used the occurrence pattern of null alleles (present vs. absent) as a dependent variable, 306 

while the method of null allele estimation (marked as 1-5) was used as a fixed categorical 307 

factor. Difference between observed (HO) and expected (HE) heterozygosity (hereafter HOHE), 308 
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number of individuals trapped in a given year and number of alleles at a particular locus in a 309 

given year were used as three separate covariates in the model, whereas year and locus were 310 

included as random categorical factors. We implemented the GLMM using the “lmer” 311 

package (Bates et al. 2011) in R (R Development Core Team 2011).  312 

The expected number of loci with null alleles was estimated as a function of the 313 

number of years analysed. For this purpose we used rarefaction curves implemented in 314 

EstimateS 800 (Colwell 2005). The curves were based on the years resampled in a random 315 

order. We constructed the curves independently for each method of null allele estimation. 316 

In order to assess how similar the five methods were in their estimates of null alleles 317 

for a given locus in a particular year, we calculated a similarity index as the probability that a 318 

null allele detected by one method will be confirmed by another. This index was calculated 319 

pairwise between the methods, and visualized with 2x2 contingency tables. 320 

We also conducted pairwise comparisons between individual null allele estimations, 321 

independent of year and method (8 years * 5 methods = 40 estimations; year 2007 was 322 

removed due to lack of voles) using EstimateS 800 (Colwell 2005). In order to understand 323 

what drives similarity among randomly selected null allele estimations, we carried out the 324 

GLM analysis as follows: For each possible pair of estimations (n = 780 pairs) we computed: 325 

(1) temporal distance (ranged from 0 to 8 years), (2) pooled number of null alleles indicated 326 

by two estimations and (3) logical statement (yes or no) indicating whether both estimations 327 

for a given pair were obtained with the same method (e.g. CERVUS vs. CERVUS) or different 328 

method (CERVUS vs. GENEPOP). These three variables were used as explanatory variables, 329 

whereas the number of shared null alleles in a given pair (indicating similarity level between 330 
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two estimations compared, which ranged from 0 to 6, mean = 0.77, SD = 0.95) was used as 331 

response variable in GLM with Poisson error distribution and log link in R package (R 332 

Development Core Team 2011).  333 

To assess whether a bottleneck influences the number of null alleles detected by each 334 

method tested, we compared the number of detected null alleles between the no-bottleneck 335 

variant with the five bottleneck variants using a χ
2 

test with Bonferroni correction. In order to 336 

test whether the duration of the bottleneck affects the number of null alleles detected, we used 337 

a Kruskal-Wallis test. To assess the level of consistency in null allele detection between the 338 

tests applied to the entire population and to the corresponding randomly selected 20% subset, 339 

we used Kendall's coefficient of concordance Wt implemented in R (R Development Core 340 

Team 2011). All these calculations were carried out for each method of null allele detection. 341 

Finally, using Wilcoxon Signed-Rank Test in R (R Development Core Team 2011), we 342 

assessed whether the observed frequency of null allele homozygotes in populations with 343 

simulated null alleles (see Generation and analysis of simulated datasets), was significantly 344 

different from the frequency expected under HWE.  345 

 346 

Results 347 

Null allele detection in the root vole population  348 

The number of alleles per locus in the root vole population ranged from 4 to 25 (mean 349 

= 14; SD = 5.6). Expected heterozygosity (HE) ranged from 0.107 to 0.925 (mean = 0.780; SD 350 

= 0.218), and observed heterozygosity (HO) from 0.080 to 0.926 (mean = 0.762; SD = 0.215). 351 

The analysed loci had high mean polymorphic information content (mean = 0.760, SD = 352 
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0.220) and high exclusion probability for the first parent (mean = 0.50, SD = 0.207), which 353 

allowed us to use them successfully in parentage and kinship analyses (see Pilot et al. 2010). 354 

In all but one locus, significant deviations from HWE were detected in different years, with 355 

both heterozygosity deficit (59%) and excess (41%) being observed (Supplementary Table 1). 356 

In 60% of the loci (n = 12) the allele distribution had no missing alleles of any length within 357 

the expected range. In 15% of the loci (n = 3), the allele distribution had one missing allele 358 

length, other 15% (n = 3) had two missing allele lengths, and in the remaining 10% of the loci 359 

(n = 2), more than two allele lengths were missing. At the same time, we did not detect any 360 

null allele homozygotes, which would be indicated as a locus with no detectable product 361 

(blank result). 362 

The number of loci in which putative null alleles were detected varied among years 363 

and depended on the estimation method (Table 1). The set of 20 loci was analysed for each 364 

study year separately, which resulted in 8 replicates and a total of 160 loci*replicates (number 365 

of loci multiplied by number of years). In total, CERVUS detected the lowest number of 366 

putative null alleles at 14 loci*replicates, while MICRO-CHECKER detected putative null 367 

alleles in 15 loci*replicates, ML-NullFreq in 36 loci*replicates and GenePop in 46 368 

loci*replicates. Altogether, using these four different methods we recorded 67 loci*replicates 369 

with putative null alleles out of the total number of 160 loci*replicates. Among them, 68.5% 370 

(n = 46) were detected only by one out of 4 methods, 12% (n = 8) by 2 methods, 4.5% (n = 3) 371 

by 3 methods, and 15% (n = 10) by 4 methods (Table 1). Only two loci had no null alleles 372 

detected in any year. There were no loci where null alleles were detected in each year (Table 373 

1). Moreover, the number of loci with detected putative null alleles estimated for the entire 374 
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dataset with all years pooled also depended on the estimation method (see Supplementary 375 

Table 2). The frequency of detected putative null alleles (Table 1) was lower than 10% in 73% 376 

of cases (Figure 1). We found no correlation between the number of discontinuities in allele 377 

distribution and the number of detected null alleles within a locus. Finally, the frequency of 378 

null allele detection at loci originally developed for M. oeconomus did not differ from the 379 

frequency at loci originally developed for other species.  380 

 381 

Null allele detection based on parent-offspring genotype comparison in the root vole 382 

population 383 

We investigated 270 father-offspring pairs and 241 mother-offspring pairs, resulting in 384 

the detection of 18 parent-offspring pairs carrying putative null alleles. As shown in Table 1, 385 

the parent-offspring method detected null alleles in 11 loci*replicates. Seven loci were 386 

indicated as having null alleles once (in one out of 8 years), and 2 loci were indicated twice 387 

(in two out of 8 years). Five loci*replicates with putative null alleles detected using the 388 

parent-offspring analysis were also detected by all four ML programs tested (Table 1). Three 389 

other loci*replicates indicated by the parent-offspring analysis were not confirmed by any of 390 

these four programs. At the same time, four other loci*replicates with null alleles detected by 391 

all the other four programs, were not confirmed by the parent-offspring analysis. 392 

 393 

Null allele detection in the simulated populations 394 

In the 1200 simulated populations the number of alleles per locus ranged from 2 to 34 395 

(mean = 14; SD = 4.2). Expected heterozygosity (HE) ranged from 0.068 to 0.957 (mean = 396 
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0.861; SD = 0.081), and observed heterozygosity (HO) from 0.07 to 1.0 (mean = 0.861; SD = 397 

0.087). The analysed loci had high mean polymorphic information content (mean = 0.860; SD 398 

= 0.091) and high exclusion probability for the first parent (mean = 0.420, SD = 0.129) (for 399 

detailed information see Supplementary Table 3). In some loci, significant deviations from 400 

HWE were detected (Supplementary Table 4). 401 

Among 24,000 loci*replicates, the number of loci with putative null alleles detected 402 

was highest for ML-NullFreq (n = 1255 loci*replicates; 5.2% of the total number) and 403 

GENEPOP (n = 1123 loci*replicates; 4.7%), followed by MICRO-CHECKER (n = 500 404 

loci*replicates; 2.1%), and it was lowest for CERVUS (n = 327 loci*replicates; 1.4%) 405 

(Supplementary Table 5). Altogether, using the four different methods we detected 2532 406 

loci*replicates (10.5% out of 24,000 analysed) with putative null alleles. Among them, 81% 407 

(n = 2056) were detected only by one of the 4 methods, 12% (n = 296) by 2 methods, 6% (n = 408 

163) by 3 methods, and 1% (n = 17) by all 4 methods (Supplementary Table 4). 409 

All the null alleles detected in these 1200 simulated populations were false positives, as 410 

the program SPAms used for their generation does not simulate null alleles. Therefore, we 411 

selected 120 populations where no null alleles were detected, introduced simulated null alleles 412 

by using NullAllelesGenerator, and repeated the analysis with the same four methods. In this 413 

case, MICRO-CHECKER, CERVUS and ML-NullFreq detected either none or very low 414 

frequencies of false positives (0.1% of loci that were actually free of null alleles and 1.6-1.9% 415 

of all loci with null alleles detected). In contrast, GENEPOP detected a considerable number of 416 

false positives: they were found in 9% of loci that were actually free of null alleles and 417 

constituted 55% of null alleles detected by this method (Table 2). Each of the four programs 418 
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produced a considerable number of false negatives (i.e. true null alleles that remained 419 

undetected) in proportions that ranged between 22% (in ML-NullFreq) and 42% (in CERVUS) 420 

of all loci with known true null alleles. 421 

 422 

Statistical analysis 423 

The GLMM revealed that the probability of null allele detection in the root vole 424 

population depended on the method applied. It was lowest for the parent-offspring method (as 425 

expected due to smaller sample size used for this analysis – see Materials and Methods) and 426 

highest for the GENEPOP method (Table 3). The number of null alleles detected using the 427 

parent-offspring method was about 16 times lower as compared to GENEPOP and nearly 10 428 

times lower as compared to ML-NullFreq method. Within the remaining methods, the 429 

differences were also significant: the frequency of null allele detection was higher in ML-430 

NullFreq than in CERVUS (P <0.0001), and higher in GENEPOP than in CERVUS (P < 0.0001) 431 

but no differences were found between CERVUS and MICRO-CHECKER (P = 0.673).  432 

The GLMM also revealed that differences between observed and expected 433 

heterozygosity (HOHE) in the root vole population had a significant influence on the detection 434 

probability of putative null alleles (Table 3). The effects of number of individuals trapped in a 435 

particular year, and the number of alleles in a given locus in a particular year were non- 436 

significant (Table 3).  437 

Although the expected cumulative number of loci where putative null alleles were 438 

detected increased asymptotically with increasing sample size, the rate of increase differed 439 

between the five methods applied (Figure 2). Depending on the method, null alleles occurred 440 
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in 25% to 75% of loci for the all eight years cumulatively. 441 

Inspection of the similarity patterns shows that a null allele detected in the root vole 442 

population by a given method is usually a very weak predictor of it being detected by another 443 

method. As a consequence, consistent estimates of null alleles by two methods were rare and 444 

ranged from 12% to 58% of method-pairs (mean = 29.05%, Figure 3). In the simulated 445 

populations, the observed similarity pattern was even lower and ranged from 1.8% to 35.4% 446 

(mean = 13.6%, Figure 3). 447 

GLMs showed that the pooled number of null alleles estimated in the root vole 448 

population by two randomly selected methods explained the number of null alleles shared by 449 

these two methods (GLM, B = 0.19, SE = 0.01, z = 18.06, P <0.001). Contrary to 450 

expectations, the number of shared putative null alleles was similar in the “between-methods” 451 

and the “within-method” pairs of estimates (B = 0.14, SE = 0.10, z = 1.36, P = 0.174). The 452 

effect of temporal distance between samples from different years was insignificant for the 453 

similarity among estimates (B = -0.04, SE = 0.02, z = 1.85, P = 0.064). 454 

In the simulated populations (n = 100 individuals each), a change in the population size 455 

(bottleneck effect) significantly affected the number of loci with detected null alleles (Table 456 

4). GENEPOP detected significantly higher number of loci with null alleles in four out of five 457 

comparisons, CERVUS in three, and the remaining two programs in one (Table 4). We also 458 

found that the cumulative number of loci with detected null alleles increased with the 459 

increased bottleneck duration (Figure 4). Bottleneck duration also significantly affected the 460 

number of null alleles detected by GENEPOP (Kruskal-Wallis Hc = 11.9; P < 0.05), although 461 

no significant correlation was detected in other programs. 462 
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In the “sub-sampled” simulated populations (n = 20 individuals), we observed very low 463 

concordance of null alleles detected (using each of the four methods) as compared with the 464 

original population (n = 100 individuals) (mean Kendall's coefficient of concordance for four 465 

programs Wt = 0.11; SD = 0.06) (Table 5).  466 

Finally, in populations with simulated null alleles, the observed frequency of null allele 467 

homozygotes differed significantly from the expected frequency (V = 10070; P < 0.001; 468 

Supplementary Figure 1). We observed deviations toward both null allele homozygote 469 

deficiency and excess (Supplementary Figure 1). For null allele frequencies below 0.17 we 470 

observed cases were no null allele homozygotes occurred, but there were no such cases for 471 

null allele frequencies higher than 0.17. 472 

 473 

Discussion 474 

Detection of null alleles using indirect methods is susceptible to errors, given that 475 

these methods are based on assumptions that are commonly violated in natural populations. 476 

Methods based on comparing observed and expected heterozygosity (Dempster et al. 1977, 477 

Chakraborty et al. 1992, Brookfield 1996, Summers & Amos 1997, Kalinowski & Taper 478 

2006) assume that null alleles can be detected based on observed deviations from HWE 479 

towards heterozygote deficit. However, natural populations may deviate from HWE because 480 

they do not meet the assumptions of the Hardy-Weinberg law, and/or because they are often 481 

studied based on a small number of samples, which may lead to random deviations from the 482 

equilibrium at different loci. The parentage method does not assume HWE, but may be prone 483 

to other types of errors, e.g. human errors with microsatellite scoring. The error rate in null 484 
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allele detection in natural populations is difficult to estimate, because the actual null allele 485 

frequencies are usually unknown. Our study was based on a natural population that was 486 

sampled for several consecutive years, and so the same null alleles were expected to occur 487 

throughout the entire study period. This allowed us to test the reliability of several methods of 488 

null allele estimation through the comparison of results between different years. Application 489 

of the same methods to 1200 simulated populations that underwent bottlenecks of different 490 

intensity and duration allowed us to further examine the effect of strong genetic drift on null 491 

allele detection. 492 

 493 

Accuracy of null allele detection in the root vole population 494 

We found inconsistencies in null allele estimation both across years for each method 495 

and among different methods within each year. We also failed to find any statistically 496 

significant temporal repeatability in null allele detection at any locus. Each method detected a 497 

considerable number of null alleles in the 1200 simulated datasets, and there were significant 498 

differences in null allele estimates among the methods. However, the number of null alleles 499 

detected was positively correlated with the bottleneck size in each of the methods tested. 500 

Crucially, the simulated populations did not originally include any null alleles (the program 501 

SPAms used for their generation does not simulate null alleles), so all the detected null alleles 502 

were false positives. 503 

We thus conclude that all putative null alleles detected in the root vole population are 504 

likely to be false positives. Our conclusion is supported by the following evidence: First, 505 

given that real null alleles are derived from primer compatibility problems during PCR 506 
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amplification and PCR protocols did not change between years, we would expect the same 507 

null alleles to be present in each year of the study, or at least in most years (accounting for the 508 

sampling effect – see below). Yet, none of the methods tested detected such continuous 509 

presence for any of the loci. One explanation for this could be that individuals having null 510 

alleles in their genotypes were not sampled every year. In that case the number of individuals 511 

sampled in a particular year should have a significant influence on null allele detection 512 

probability. The GLMM analysis did not find such a correlation, which allows us to reject this 513 

explanation. Additionally, according to MARK estimate, over 90% of all individuals present 514 

in the study population were genotyped, and therefore the probability of omitting all 515 

individuals with a given null allele is negligible, unless this allele has a very low frequency in 516 

the population. However, the impact of null alleles with such low frequencies on results of 517 

population-level genetic analyses would be negligible.  518 

Second, lack of missing data in the root vole genotype dataset is also consistent with 519 

low frequency or lack of null alleles in this population. Although the relationship between null 520 

allele frequency and the frequency of null allele homozygotes based on the Hardy-Weinberg 521 

law does not necessarily hold in non-equilibrium populations, these two parameters are 522 

always dependent as demonstrated for the simulated populations. Therefore, it is expected that 523 

in a locus with high null allele frequency, some blank results should occur. There are some 524 

cases in the root vole population where the estimated null allele frequency was above 20% 525 

(Figure 1). Under the Hardy-Weinberg law, such loci should contain over 4% of null allele 526 

homozygotes. However, we detected none, despite a large number of genotyped individuals. 527 

Third, kin clustering and non-random mating have been earlier demonstrated in this 528 
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population (Dąbrowski 2010). We also found that significant multi-annual changes in density 529 

and random environmental events (e.g. seasonal floods) have a strong impact on rates of 530 

seasonal migration, male dispersal, and female philopatry (Pilot et al. 2010, Dąbrowski 2010). 531 

Heterozygosity could thus have been lost (and regained) from year to year due to both genetic 532 

drift and migration (Pilot et al. 2010, Dąbrowski 2010). We also found genetic signatures of 533 

bottleneck in this population (Pilot et al. 2010), and we show in this study, based on simulated 534 

data, that bottlenecks may significantly increase the frequency of false null alleles detected by 535 

each of the methods tested. Therefore, we conclude that the pattern of the putative null allele 536 

occurrence observed in the study population, is more likely to result from population genetic 537 

processes like density fluctuations, migration and non-random mating, than from factors 538 

associated with PCR amplification outcomes. 539 

 540 

Inconsistencies among different methods of null allele detection 541 

Our study revealed large inconsistencies among the compared methods of null allele 542 

detection in both the natural root vole population and the simulated datasets. The average 543 

similarity among the methods used to detect null alleles was 29.05% for the root vole 544 

population and only 13.6% for the simulated populations. While detection of false null alleles 545 

may be explained by population genetic processes leading to deviations from HWE, 546 

inconsistencies among the methods cannot be accounted for solely by this explanation. The 547 

method based on parentage analysis relied on different assumptions and smaller pool of 548 

individuals than the heterozygosity-based methods, and the resulting differences were 549 

consistent with expectations. However, the four heterozygosity-based methods applied the 550 



 

26 

 

 

 

 

 

same general assumptions (see Supplementary Material). They differed in the way missing 551 

data was interpreted, but neither the root vole population nor the original SPAms-generated 552 

populations included any missing data. Therefore, we conclude that the discrepancies among 553 

these methods do not result from differences in the theoretical assumptions, but rather from 554 

differences in the particular optimisation algorithms applied. 555 

 556 

How to combine different methods to minimise errors in null allele detection? 557 

Our study raises a question regarding whether estimates of null alleles reported in the 558 

literature, which are usually inferred using indirect methods, are always reliable. The number 559 

of null allele occurrences within different allele frequency classes calculated in this study for 560 

the root vole population (Figure 1) has a similar distribution to the one shown in Dakin & 561 

Avise (2004), based on an extensive literature review. Given that our results show that most 562 

null alleles detected in the root vole population are likely false positives (see above), this 563 

similarity raises a further question of whether the recommendation for discarding loci 564 

showing null alleles from analysed datasets (De Sousa et al. 2005) should be followed 565 

unconditionally. 566 

 In the case of the root vole population, several loci with putative null alleles would 567 

have to be excluded following this recommendation, with different number of loci excluded 568 

depending on the year and the detection method used. Moreover, if sampling was carried out 569 

for a longer period, we may expect that the number of loci with putative null alleles would 570 

increase with the number of study years (see Figure 2), because we observed no consistent 571 

detection pattern among years for any locus. 572 
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It may be thus useful to devise strategies that combine different methods to minimise 573 

errors in null allele detection based on the results from our study. We found that in the 574 

simulated populations without null alleles, 81% of false positives were detected by only one 575 

out of the four heterozygosity-based methods, while only 1% of false positives were detected 576 

by all the four methods. At the same time, in the simulated populations where null alleles 577 

were included, 58% of true null alleles were detected by all the four methods. Therefore, 578 

combining two or more methods and considering only the consistent putative null alleles 579 

should considerably reduce the detection of false positives. However, it may also result in 580 

non-detection of some true null alleles, especially if more than two methods are applied. 581 

 Therefore, it may be useful to assess which of the four methods tested are less error-582 

prone. In the simulated populations without null alleles, CERVUS and MICRO-CHECKER 583 

detected less false positives (1.4% and 2.1%, respectively) as compared with the two other 584 

methods. On the other hand, in the simulated populations with null alleles, ML-NullFreq had 585 

the lowest proportion of false negatives (22%), while for CERVUS and MICRO-CHECKER 586 

this proportion was 42% and 33%, respectively. GENEPOP was the only method that still 587 

detected a considerable number of false positives in the simulated datasets (prior to the 588 

simulation of true null alleles) that were pre-selected specifically as having no false positives 589 

detected by any of the four programs. Therefore, this program seems to be particularly error-590 

prone in terms of the detection of false null alleles. We thus suggest that the best strategy to 591 

minimise the errors in null allele detection would be the combined use of two or three of the 592 

remaining methods (ML-NullFreq, CERVUS and MICRO-CHECKER). The combination of 593 

CERVUS and MICRO-CHECKER is best for minimising the false positives’ rate, while the 594 
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combination of ML-NullFreq and MICRO-CHECKER is best for minimising the false 595 

negatives’ rate. 596 

However, before applying these methods, it is important to account for the occurrence 597 

of other types of genotyping errors like allelic dropouts or false alleles (e.g. resulting from 598 

stuttering), which can be detected e.g. using MICRO-CHECKER and/or by replicating the 599 

genotyping for a number of individuals. It is also important to minimise the occurrence of 600 

missing data due to reasons other than null allele homozygotes by repeating failed PCRs at 601 

least once. 602 

Because heterozygosity-based methods assume HWE, it is important to minimise 603 

errors that may result from violations of the assumptions of Hardy-Weinberg law. For 604 

example, if population genetic structure is detected, the presence of null alleles should be 605 

assessed for each sub-population separately. The parentage-based method does not assume 606 

HWE, so it may help minimising the detection of false null alleles if used in addition to the 607 

heterozygosity-based methods; however, we recognise it won’t always be possible or practical 608 

to use this method, due to its reliance on a detailed reconstruction of parent-offspring 609 

relationships within the study population. Finally, our study showed that material collected 610 

from the same population during several seasons (if there is sufficient generational turnover) 611 

may help interpreting the results of null allele detection and prevent their overestimation of 612 

their numbers. Alternatively, if sample size is sufficiently large, the accuracy of null allele 613 

detection may be improved by comparing the results obtained from different random sub-sets 614 

of the entire dataset analysed. 615 

  616 
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Conclusions 617 

Our study shows that many commonly used null allele detection methods exhibit low 618 

reliability and consistency when applied to non-equilibrium populations. When we account 619 

for both false null allele detection rate and non-detection rate of the true null alleles, no 620 

method can be considered as clearly superior over the others. We thus suggest the combined 621 

use of at least two methods and considering only putative null alleles detected consistently by 622 

different methods. This should considerably reduce the detection of false positives. However, 623 

this approach is compromised by an increased rate of false negatives (non-detected real null 624 

alleles), and thus provides only a sub-optimal solution. Our study demonstrates the need to 625 

develop null allele detection methods that could be applied to non-equilibrium populations 626 

without violating the model assumptions. 627 
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Figure legends 746 

Figure 1. Histogram of frequencies of putative null alleles detected using different algorithms 747 

implemented in the evaluated programs: CERVUS (algorithm of Summers & Amos); MICRO-748 

CHECKER (algorithms: Oosterhout, Chakraborty, Brookfield 1, Brookfield 2), and GENEPOP 749 

(EM algorithm of Dempster 1977).  750 

 751 

Figure 2. Expected cumulative number (left axis) and percentage (right axis) of loci where 752 

putative null alleles were detected using five different methods, are presented as a function of 753 

the number of years studied. C – CERVUS; M – MICRO-CHECKER; N – ML-NullFreq; G – 754 

GENEPOP. 755 

 756 

Figure 3. Similarity of null allele estimates between the methods applied for the natural root 757 

vole population and the simulated populations. The plot gives an average expectation that a 758 

null allele detected by one method will also be detected by the other method (gray – the 759 

simulated data; white – the root vole data). 760 

 761 

Figure 4. Cumulative number of loci with putative null alleles within the simulated 762 

populations (n = 100 individuals each) with different bottleneck scenarios. “Time” denotes 763 

the bottleneck duration in generations. Cumulative number of loci is the sum of loci where 764 

null alleles were detected using any of the four methods. 765 

 766 
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Table 1. The presence of putative null alleles in the root vole population in each locus per 767 

year, estimated using five different methods. 768 

Study year 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Sample size 150 116 130 39 70 147 84 0 16 

Locus           

AV12   N N G P   G 

AV13 CMNG  CMNGP CMNG NG     

AV14    NG  N G   

AV15 N         

Moe1  G M G  G N  G 

Moe2    G  G    

Moe3 G NG G   MNG G   

Moe4 CMNGP NG  CMN N  CMNGP  N 

Moe5  P   N     

Moe6 MN G N G P  N  CNG 

Moe7  CMNGP MG G  CMNG CMNGP  G 

MSCRB4   C C      

MSCRB6  G  G      

MSMM2          

MSMM3 N  P  N N    

MSMM4 N   N  NG G   

MSMM5 NG G G G G G    

MSMM6  CMNGP  G  CMNG   G 

MSMM7 NP   G      

MSMM8          

The presence of a putative null allele is marked by the symbol of the program (or multiple programs) that 769 

detected it: C – CERVUS; M – MICRO-CHECKER; N – ML-NullFreq; G – GENEPOP, and P – comparison of 770 

mismatching loci in parent-offspring genotypes. In the second row, the number of individuals sampled in each 771 

year is shown (Sample size). 772 

 773 
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Table 2. Null alleles detected using MICRO-CHECKER, CERVUS, ML-NullFreq and 774 

GENEPOP for 120 simulated populations containing two null alleles each. Loci with known 775 

null alleles were compared with loci detected using different programs (0- loci without null 776 

alleles; 1- loci with null alleles). Black background: true positives, grey background: true 777 

negatives, white background: false negatives, underline value: false positives. 778 

 779 

  Null Alleles Generator 

  0 1 

MICRO-CHECKER 0 2164 78 

 1 2 156 

    

CERVUS 0 2166 99 

 1 0 135 

    

ML-NullFreq 0 2163 52 

 1 3 182 

    

GENEPOP 0 1967 72 

 1 199 162 
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Table 3. Summary results of a generalized linear mixed model with binomial error 780 

distribution and logit link, explaining the presence of the null alleles as a function of the four 781 

predictors: (1) difference between observed and expected heterozygosity (HOHE), (2) number 782 

of individuals trapped in a given year, (3) number of alleles in a particular locus in a given 783 

year and (4-8) the method of null allele detection. Symbols of different methods are explained 784 

in Table 1. Year and locus were included as random categorical factors in the model. For 785 

every level of each predictor the following parameters are given: estimate (B), with standard 786 

errors (SE), exponentiated estimate (Exp(B)), tests statistic (z-value), and significance (P -787 

value).  788 

Effect  B SE Exp(B) z-value P -value 

Intercept  -3.507 0.593 0.030 -5.918 0.000 

(1) HOHE -28.760 3.070 0.000 -9.368 < 0.001 

(2) N of individuals 0.000 0.003 1.000 -0.013 0.990 

(3) N of alleles -0.037 0.031 0.964 -1.175 0.240 

(4) Method = G 0.579 0.554 1.785 1.045 0.296 

(5) Method = M 2.782 0.495 16.154 5.623 < 0.001 

(6) Method = N 0.811 0.541 2.249 1.498 0.134 

(7) Method = P 2.283 0.498 9.806 4.586 < 0.001 

(8) Method = C 0.000  1.000   
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Table 4. Pairwise comparisons of the number of loci with putative null alleles between 789 

variant 1 of the simulation (no bottleneck) with the other five variants with different level of 790 

bottleneck. Comparisons were made for each program separately. Values presented in the 791 

table are results of χ
2
 test. Statistically significant results are marked with (*). 792 

Bottleneck pair variants CERVUS GENEPOP MICRO-CHECKER ML-NullFreq 

1-2 0.272 2.010 0.286 < 0.001 

1-3 2.502 70.040** 3.704 4.560 

1-4 9.318* 148.700** 0.008 0.011 

1-5 42.760** 206.500** 1.347 1.612 

1-6 114.700** 176.500** 24.940** 16.870* 

(*) P < 0.01; (**) P < 0.001; Bottleneck pair variants: 1 - 99,999; 2 - 50,000; 3 - 25,000; 4 - 10,000; 5 – 5,000; 6 793 

– 2,500. The ancestral number of individuals for all bottleneck variants was set to 100,000 individuals.794 
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Table 5. Pairwise comparison of loci with detected null alleles in two data sets: simulated 795 

original populations (n = 100 individuals per each population) and sub-sampled populations 796 

(n = 20 individuals randomly selected from original population). 797 

Variable CERVUS GENEPOP MICRO-CHECKER ML-NullFreq 

Wt 0.182 0.040 0.093 0.123 

N 229 223 59 214 

CP 13 9 6 30 

new-P 204 129 24 96 

not-CP 12 85 29 88 

Wt –Kendall's coefficient of concordance corrected for ties; N – number of loci with null alleles detected in at 798 

least one dataset (either original or under-sampled); CP – conserved positives: loci with detected null alleles in 799 

both sets of populations; new-P – new positives: loci with null alleles detected only in under-sampled data set; 800 

not-CP – not conserved positives: loci with null alleles detected in the original data set which were not 801 

confirmed within under-sampled data set. 802 

 803 
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Figure 1 805 
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Figure 2 808 
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Figure 3 811 
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Figure 4 813 
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Supporting Information 814 

Additional Supporting Information may be found in the online version of this article: 815 

 816 

Table S1 Characteristics of 20 microsatellite loci analysed in the root vole population, 817 

organized in four multiplex PCR reactions. 818 

 819 

Table S2 Loci with putative null alleles confirmed for the entire dataset (root vole population, 820 

all years pooled) using all four methods. 821 

 822 

Table S3 Characteristics of the simulated populations. Range, mean values and SDs were 823 

computed separately for 50 replicates representing each scenario of the bottleneck size and 824 

duration (in generations). 825 

 826 

Table S5 Number of loci with null alleles detected using four programs in populations 827 

simulated with various levels and duration of a bottleneck. 828 

 829 

Fig. S1 The observed and expected frequency of homozygotes vs. null allele frequency in the 830 

loci where null alleles were simulated using NullAlleleGenerator in 120 randomly selected 831 

populations. 832 

 833 

Table S4 Genetic estimates and null allele detection results computed for simulated 834 

populations affected by bottleneck scenarios. 835 


