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Abstract 
 

The role of inflammation in tendon injury is uncertain and a topic of current interest. In vitro studies 

of tendon accelerated overload damage can serve as a valuable source of information on the early 

stages of tendinopathy. 

 

Viable fascicle bundles from bovine flexor tendons were subjected to cyclic uniaxial loading from 

1-10% strain. Immunostaining for inflammatory markers and matrix degradation markers was 

performed on the samples after mechanical testing. 

 

Loaded samples exhibited visible extracellular matrix damage, with disrupted collagen fibres and 

fibre kinks, and notable damage to the interfascicular matrix. Inflammatory markers COX-2 and IL-

6 were only expressed in the cyclically loaded samples. Collagen degradation markers MMP-1 and 

C1,2C were colocalised in many areas, with staining occurring in the interfascicular matrix or the 

fascicular tenocytes. These markers were present in control samples, but staining became 

increasingly intense with loading. Little MMP-3 or MMP-13 was evident in control sections. In 

loaded samples, some sections showed intense staining of these markers, again localised to 

interfascicular regions. 

 

This study suggests that inflammatory markers may be expressed rapidly after tendon overload 

exercise.  Interestingly, both inflammation and damage-induced matrix remodelling seem to be 

concentrated in, or in the vicinity of, the highly cellular interfascicular matrix. 
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Introduction 

 

Tendinopathy is a general term for chronic tendon disease [1] characterized by a combination of 

pain, swelling and impaired tendon performance [2]. The aetiology of this disease remains to be 

elucidated and is likely to be multi-factorial. Tendinopathy is often the result of damage 

accumulation during overuse, and may also involve either mechanical over-stimulation or under-

stimulation of tenocytes and the related (imbalanced) remodelling in tendon tissue [1]. 

Tendinopathy has often been considered a degenerative disease [1] not associated with 

inflammation. However the role of inflammation within the initiation, progression and resolution of 

tendinopathy remains unclear [3]. 

Tendons have an inhomogeneous multilevel hierarchical composite structure. Considering the 

mesoscale, looking at the largest hierarchical subunits in tendon, it is possible to describe tendon as 

a composite material with two main phases (or matrix components). The phases are the fascicles 

(fascicular matrix, FM), which are longitudinal structures composed predominantly of uniaxially 

arranged type I collagen fibres, and the interfascicular matrix (IFM) or endotenon that fills the 

spaces between fascicles (see Figure 1). IFM is a highly cellular matrix phase consisting of a range 

of non-collagenous proteins including elastin, proteoglycans and also minor collagens [4]. 

 



 

Fig. 1. Schematic and histological section of a bovine flexor tendon, depicting the two phases (components) 

of the tendons structure at the meso-scale: collagen-rich fascicles, termed fascicular matrix (FM) and the 

surrounding endotendon, termed interfascicular matrix (IFM). Notice the different cell shapes and numbers 

within fascicles (tenocytes) and the IFM (IFM cells). Cell nuclei are stained with DAPI (blue). 
 

The IFM has a more sparse fibre arrangement, with lower volume fractions of fibrillar material than 

fascicular matrix. Arrangement of fibres in the IFM is more network-like, which suggests softer, 

and likely more complex mechanical behaviour [5], [6] as compared to the uniaxially arranged, 

mainly collagen type I, fibres in fascicles. The collagenous phase volume fraction and the 

orientation of fibres both have previously been shown to have a direct impact on tissue mechanics 

[7, 8, 9, 10], suggesting that the interfascicular matrix is likely more prone to damage and injury. 

This softer phase is thought to create sliding planes between fascicles that facilitate increased 

tendon extension and recoil [11].  However, the exact role of the interfascicular matrix in tendon 

injury or remodelling remains uncertain. 

 

Tendons are thought to undergo slow remodelling mediated by matrix metalloproteinases (MMPs) 

and disintegrins and metalloproteinases with thrombospondin motifs (ADAMTS), whose activity is 

inhibited though tissue inhibitors of metalloproteinases (TIMPs) [1].  

These enzymes, and their inhibitors, have roles in extracellular matrix turnover in health but also in 

pathological conditions. However, it remains unclear how tendon turnover is mediated by the 

tendon cell population. The cell population in tendon is heterogeneous, consisting of elongated 

tenocytes between collagen fibres within the FM and IFM cells which are more rounded in shape 

(Figure 1). However, there are as yet no specific markers to distinguish these types of cells from 

each other or from other connective tissue cells [1]. It has been shown that cell shape is influenced 

by local mechanical properties [12, 13], and the two cell populations of tendon likely live in 

mechanically distinct environments (stiffer FM or softer IFM). In addition, the IFM regions are 

more highly cellular than FM regions. The turnover of non-collagenous matrix has been shown to 

be faster than that of collagenous matrix in tendon. The greater quantity of non-collagenous matrix 

in the IFM thus suggests that IFM cells may be more active in healthy turnover, but they may also 

play different roles in tendon injury and repair [14].  

 

The role of an inflammatory response in tendinopathy has been discussed in the literature, but no 

consensus has been achieved. How the inflammation results in damage accumulation and the 

initiation of tendinopathy is not easily investigated in human subjects, because the affected tendons 

can normally only be assessed scientifically once tendinopathic changes are advanced. Therefore, in 

vitro studies of the inflammatory response to induced tendon overload damage can serve as a 

valuable source of information on the early stages of tendinopathy. The goal of this project was to 

investigate the influence of cyclic overload exercise performed in vitro on the expression of 



inflammatory mediators and markers of matrix degradation in bovine tendons comparing the 

response of FM and IFM regions. We hypothesised that cyclic loading would result in an increase in 

the levels of the inflammatory markers COX-2 and IL-6, and would also increase levels of the 

matrix degrading enzymes MMP-1, -3 and -13, resulting in increased collagen degradation. Further 

we hypothesised that the response to overload would be localised predominantly in the IFM. 

 

Methods 

 
Samples and loading protocol 

 

Deep digital flexor tendons from the forelimbs of skeletally mature adult cows aged 18 months (n = 

3) were obtained from an abattoir immediately post-mortem.  As we aimed to investigate the matrix 

response from both collagen-rich fascicles and the interfascicular matrix, fascicle bundles (n=12) 

containing both types of matrix were dissected (Figure 2). The fascicle bundles we tested in this 

study were on average 1.5mm in diameter, incorporating a minimum of 3 fascicles. From each 

tendon, one fascicle bundle was assigned to each test group: 

1) CON - fresh control: snap frozen immediately after dissection; 

2) STA - static control: held at 1% strain for 24hrs; 

3) 300C - cyclically loaded for 300 cycles (5 minutes) from 1-10% uniaxial strain (1Hz) 

followed by 1% static strain for 24hrs; 

4) 1800C - cyclically loaded for 1800 cycles (30 minutes) from 1-10% uniaxial strain (1 Hz) 

followed by 1% static strain for 24hrs. 

Samples from groups 2-4 were placed into individual chambers of the multiple chamber system 

(Figure 2), gripped with a gauge length of 10mm. The cyclically loaded samples (groups 3-4) were 

subjected to large cyclic strains from 1-10%, using a Bose mechanical test system housed in an 

incubator. The straining regimes have previously been shown to simulate overload [15]. During 

testing the samples were maintained in sterile cell culture medium (DMEM) supplemented with 

penicillin (50 U/ml), streptomycin (0.05 mg/ml) and L-glutamine (2 mM) and maintained in an 

incubator at 37 ºC, 20 % O2, 5 % CO2. 

 

After the end of the 24h test period, samples were removed from the chambers and snap frozen in 

optimal cutting temperature (OCT compound, VWR) embedding medium (cooled in hexane on dry 

ice) and stored at -80ºC. Three 20μm longitudinal cryo-sections were cut from each sample and 

mounted on poly-l-lysine coated slides for further analysis. 

 

Immunostaining 

 

Dual immunostaining for the following three marker pairs was performed: 

• inflammatory markers - cyclooxygenase (COX-2) and interleukin (IL-6).  

• matrix degradation markers: matrix metalloproteinase MMP-1 and collagen degradation 

marker C1,2C.  

• matrix degradation markers: matrix metalloproteinases MMP-3 and MMP-13. 

Details of the antibodies used are shown in Table 1. 

 

 

 

 

 

 

 

 

 



 

Marker Target Primary 

antibody 

Concen-

tration 

Secondar

y 

antibody 

Concen-

tration 

Validation 

IL-6 

Interleukin-

6 

Inflammatory 

marker 

Goat 

polyclonal 

anti-IL6 

(R&D 

systems 

AF1886) 

 

1:25 Donkey 

anti-goat 

543 (red) 

1:500 [16] 

COX-2 

Cyclo-

oxygenase-

2 

Inflammatory 

marker 

Mouse 

monoclonal 

anti-Cox-2 

(Cayman 

Chemical 

160112) 

1:50 Donkey 

anti-

mouse 

488 

(green) 

1:500 [17, 18] 

MMP-1 

Matrix 

metallo-

proteinase-

1 

Fibrillar 

collagens 

degradation 

Goat 

polyclonal 

anti-MMP1 

(Santa Cruz 

sc-6837) 

1:50 Donkey 

anti-goat 

543 (red) 

1:500 [19] 

C1,2C Collagen type I 

and II 

degradation 

Rabbit 

polyclonal 

anti-C1,2C 

(Abcam 

18898) 

1:20 Donkey 

anti-

rabbit 

488 

(green) 

1:500 [20, 21] 

MMP-3 

Matrix 

metallo-

proteinase-

3 

Minor matrix 

proteins 

degradation 

(collagens III, 

IV, IX and X, 

proteoglycans, 

elastin) 

Goat 

polyclonal 

anti-MMP3 

(Abcam 

18898) 

1:25 Donkey 

anti-goat 

543 (red) 

1:500 [22] 

 

MMP-13 

Matrix 

metallo-

proteinase-

13 

Fibrillar 

collagens 

degradation 

Rabbit 

polyclonal 

anti-MMP13 

(Santa Cruz 

sc-30073) 

1:50 Donkey 

anti-

rabbit 

488 

(green) 

1:500 [23] 

 
Tab. 1. Details of the antibodies used. 
 

 
 



Fig. 2. Loading system used to apply overload exercise to fascicle bundles [16]. Test samples contain 

collagen-rich fascicles (grey) and interfascicular matrix (yellow) which allows for later observation of the 

both regions' response to overload exercise. 
 

Both the inflammatory markers selected, IL-6 [24, 25] and COX-2 [26, 27] have previously been 

shown to be upregulated in tendinopathy.  MMPs 1 and 13 were selected as they are known to be 

active against fibrillar collagens, including the predominant collagen type I [1, 28, 29, 30]. MMP-3 

was selected as it degrades other minor proteins in tendon matrix, including collagens III, IV, IX 

and X, and also proteoglycans and elastin [31, 28, 32, 33, 29, 30]. The C1,2C (or COL 2 3/4C short) 

antibody detects the carboxy terminus of fragmented type I and II collagen, cleaved by collagenases 

MMP-1, MMP-8 or MMP-13 [34, 35, 36, 37, 21]. 

 

Cryo-sections were thawed and fixed with acetone and then rehydrated in phosphate buffered saline 

(PBS, Sigma-Aldrich) followed by tris buffered saline (TBS, Sigma-Aldrich) plus 0.1% Triton X-

100 (Sigma-Aldrich) to permeabilise cell membranes. Blocking buffer - TBS with 1% bovine serum 

albumin, (BSA, Sigma-Aldrich) 10% donkey serum (Sigma-Aldrich) was applied to sections for 2 

hours at room temperature. After draining, the primary antibodies diluted in blocking buffer with 

1% BSA were then applied. Concentrations of antibodies used are listed in Table 1. For negative 

controls, blocking buffer without the primary antibody was applied. Sections were incubated 

overnight at 4ºC. Next sections were rinsed in TBS with 0.1% Triton, followed by the application of 

the fluorophore-conjugated secondary antibodies, diluted to the concentration listed in Table 1 in 

blocking buffer, and incubated for 1 hour at room temperature. This step was done in the dark to 

avoid photo-bleaching. Finally, sections were rinsed in PBS, mounted with DAPI containing 

mounting medium (ProLong Gold, Life Technologies) and left overnight at 4 °C to allow distinction 

of the highly cellular IFM regions from less cellular fascicular regions. Negative control sections 

were also imaged, to confirm lack of binding of secondary antibodies. 

 

Imaging, image processing and analysis 

 

Sections were imaged with a confocal microscope (Leica TCS SP2) using a 20x objective and 2x 

digital zoom. Within each slide, at least one region was imaged, in an area including fascicular and 

interfascicular matrix. The region was selected using bright field imaging, ensuring an area 

incorporating both interfascicular matrix and fascicular matrix were selected, but blinding the 

selector to the extent of staining for any marker during region selection. Four matching images were 

taken of each region: bright field -; blue channel (wavelength 351nm) - for visualisation of DAPI 

showing cell nuclei; green channel (wavelength 488nm); and red channel (wavelength 543nm) used 

for each pair of dual antibodies investigated.  

 

Semi-quantitative analyses of the images were performed in Gimp 2.8 software (GNU Image 

Manipulation Program). Images were thresholded at a single level threshold (for a given stain) and 



overlaid for visualisation and to facilitate a qualitative assessment of the extent and intensity of 

immunostaining within IFM and fascicles (FM). All images were assessed for the number of pixels 

falling above the threshold. The brightness of each pixel falling above the threshold was first 

measured after which an average image brightness was calculated. Stain intensity was calculated, 

defined as the stain brightness multiplied by the stained area [38]. 

 

108 stained sections have been imaged and evaluated from which mean stain intensity and standard 

deviation was determined for each antibody used across all load conditions. Some images were 

discarded based on features like prominent blood vessels in the field of view. Sections with a bright 

background or large artefactual dots visible across both green and red channels (possible dirt 

particles) were also discarded. 

 

 

Results 

 

Tendon matrix damage 

 

Signs of fibrils damage were visible in sections of tendons that were loaded for either 300 or 1800 

cycles (marked with white ellipses in Figures 4 and 5). Fibre kinks and damage were visible and 

increased in severity with increasing load regime. Damage was also evident in the IFM as 

disruption of the structure. 

 

A semi-quantitative evaluation of the inflammatory and matrix degradation markers was carried out, 

as summarised in Figure 3 and discussed below. 

 

Inflammatory markers 

 

Inflammatory markers were only expressed in the cyclically loaded samples (see Figure 4) with 

staining seen within both the FM, and IFM. 

 

The intensity of IL-6 staining was similar between the samples loaded for 300 and 1800 cycles, 

while the areas of COX-2 staining (see Figure 3) increased substantially with increasing time of 

loading. 

 

 



 
 
Fig. 3. Changes in stain intensity for control samples (CON), statically loaded samples (STA), samples 

loaded for 300 cycles (300C) and samples loaded for 1800 cycles (1800C) calculated as an average across 

the whole sample. Test groups show the mean values for the stain intensity (defined as stain brightness 

multiplied by the stained area). Error bars show standard deviations and are shown for all data sets. Note 

the differences in the levels of stain for different antibodies (y-axes), with the highest levels of expression for 

MMP-3 and the lowest for the inflammatory markers (IL-6 and COX-2).  
 



 
Fig. 4. Typical static (a) and loaded (b, c) samples immunostained for inflammatory markers. Damage is 

evident in both the fascicles and the interfascicular matrix of the loaded samples (examples of damage – 

collagen fibres kinks and IFM disruption shown with white ellipses). Both inflammatory markers were only 

expressed in loaded samples, with COX-2 expression increasing with the cycle number. Scale bar is 10μm. 
 

 

Matrix degradation markers 

 

The matrix degrading enzyme MMP-1 and degradation marker C1,2C were present in control 

samples (Figure 5 a and d) as well as the loaded samples (Figure 5 b, c, e, f), with the high levels of 

these markers in controls suggesting continuous tendon turnover. 

 

MMP-1 and C1,2C were co-localised in many areas therefore they are shown in separate images in 

Figure 5. Whilst staining for these antibodies was observed within the FM and often associated with 

tenocytes, staining for these markers was predominantly localised to the IFM, suggesting that 

continual turnover is predominantly localised to the IFM. 

 

MMP-1 stain intensity (Figure 3) showed a trend towards increasing with loading, as did the area 

stained with C1,2C. Standard deviations in MMP-1 and C1,2C staining data were both high with 

different tendons showing large variability. However data indicated possible dose dependent 

staining, suggesting increased collagen breakdown with more overload. 

 

By contrast, little MMP-3 or MMP-13 was evident in either control group. However, in loaded 

samples, some sections showed increased staining of these markers, again localised mainly to the 

IFM (see Figure 6). While MMP-3 staining showed a similar intensity in both loaded groups, the 

response appeared to be more strain dose dependent for MMP-13 (Figure 3).  

 



 
Fig. 5. Typical static (a,d) and loaded (b, c, e, f) samples immunostained for collagen matrix degradation 

markers. MMP-1 and C1,2C are co-localised and associated predominantly with the interfascicular matrix, 

in both control and loaded samples, indicating continual turnover of the interfascicular matrix. Damaged 

areas of fibres, fibre kinks and the IFM damage are marked with white ellipses. Scale bar is 10μm. 
 

 

Fold change of markers with increasing loading time 

 

Figure 7 presents the mean fold change in stain intensity (stain brightness multiplied with stained 

area) with respect to the fresh frozen controls (shown by the horizontal dotted line) for each stain 

and all load conditions. No visible changes were observed between fresh frozen and static control 

samples for any stain. Fold changes between fresh frozen and static controls were between 1.1 and 

1.6 for all stains except MMP-3, where static controls showed, on average, less staining than the 

freshly frozen controls. 

 

There are clear fold increases in inflammatory markers with strain in loaded samples: 2.0 for IL-6 

and 5.2 for COX-2, for the samples loaded for 1800 cycles (Figure 7). The highest fold increase of 

17.7 was observed for MMP-13. 

 

Inflammatory markers and matrix degrading enzymes MMP-3 and MMP-13 all showed a clear 

increase with load, suggesting a response to cyclical mechanical loading. By contrast, MMP-1 and 

C1,2C were both evident in control samples and showed little change with loading, suggesting the 

constant turnover is less affected by the range of the overload strains applied in our in-vitro 

experiments. 



 

 
Fig. 6. Typical static (a,d) and loaded (b, c, e, f) samples immunostained for matrix degradation markers.  

MMP-13 is associated with areas in which there is a large aggregation of tenocytes and in the 

interfascicular matrix. MMP-3 expression levels are higher and also remain mainly related to interfascicular 

matrix. Damaged areas of fibres and the IFM are marked with white ellipses. Scale bar is 10μm. 
 

 

 



 
Fig. 7. Mean fold change in stain intensity in the loaded samples (static controls, samples loaded for 300 and 

1800 cycles) with respect to fresh frozen controls (dotted line). 
 

 

Discussion 

 

This study subjects viable bundles of fascicles from bovine flexor tendons to overload damage, 

adopting immunohistochemistry to investigate the cellular response to injury. The in vitro overload 

protocol adopted here has previously been validated, to ensure the generation of accelerated matrix 

damage [15], and data indicated a rapid inflammatory response from tendon cells directly after 

overload. An in vitro model of overuse such as this is unlikely to fully recapitulate the in vivo 

environment, but allows for precise control of the loading environment, which it is otherwise very 

difficult to achieve. Further, our in vitro model is likely to result in larger and more uniform 

straining across our fascicle bundles than would be seen in vivo, where strains are distributed across 

the whole tendon's hierarchical structure and along the whole length of the tendon.  However, this 

accelerated fatigue model facilitates assessment of the cell response to local tendon damage [16].  

 

Immuno-staining and semi-quantification relies on sufficient antibodies having access to epitope 

binding sites within the tissue section. The structure of the two phases of tendon: FM and IFM is 

different, with densely packed collagenous fibres (mainly collagen type I) within the FM and 

sparser, network-like fibrillar structure in the IFM. It is feasible that antibody binding epitopes were 

more accessible in the IFM than in the dense FM structure, which could lead to diminished staining 

in the FM phase of tendon. Also different antibodies are likely to have different binding affinities, 

which make the comparison between different stains difficult. A detailed solution for this problem 

could be devised with molecular dynamics simulations of the particular biological surface and the 

immunostaining solution, but this was not in the scope of the work presented here. 

 



This study suggests that inflammatory markers may be expressed rapidly and early after tendon 

overload exercise (within 24h following 5 or 30 minutes of overload exercise in our in vitro model), 

indicating that inflammation may be an early occurrence in tendinopathy. We choose to study IL-6 

as this inflammatory mediator has previously been linked to tendinopathy [24] and COX-2 as 

increased levels of COX-2 have been shown in patellar tendinopathy [26, 27], loaded human tendon 

cells [39] and injured tendons [40]. Other markers of inflammation such as IL-1 were not included 

in this study but have previously been implicated in tendinopathic tendons [41, 42] or bursa of the 

shoulder [25]. In contrast, other studies have shown no inflammatory response related to 

pathological tendons [43]. 

 

The levels of MMP-1 increased with loading, correlating with previous studies, which have shown 

increased MMP-1 expression in tendinopathic [44, 45] or ruptured [46] tendons. Further, MMP-1 

expression has recently been shown to increase with overload fatigue inducing exercise in equine 

tendons [47]. Interestingly, the increased levels of MMP-1 in the IFM colocalised with staining for 

the C1,2C marker that detects the fragmented type I and II collagen, indicating that the MMP1 

present is in an active form. 

 

The up-regulation of MMP-3 and MMP-13 in the current study also agrees with previous work, 

showing up-regulation of both these MMPs in pathological tendons [45, 48, 49, 50, 47]. However, 

MMP-3 has also been shown to be down-regulated in both ruptured and tendinopathic tendons, as 

shown by the mRNA expression level [46]. The difference in response may be attributed to both 

timing (post-injury) and the method used for identification of tissue response.  

 

Interestingly, in this study, both inflammation and damage-induced matrix remodelling seem to be 

concentrated in or in the vicinity of the IFM. This could be partially explained by the high number 

of cells present in the IFM as compared to fascicles, with more cells available to respond to 

overload of the IFM. However, it is also possible that IFM cells and tenocytes differ in their 

phenotype and activity levels. Their respective roles in initiation, progression and resolution of 

inflammation and the consequences for tendinopathy are yet to be elucidated. 

 

Further, the mechanical role of IFM in tendon extension remains unclear. However, it has been 

hypothesised to be instrumental in allowing fascicles to slide with respect to each other [11], 

allowing higher tendon deformations before the onset of fascicle damage. In physiological use, the 

IFM may thus be subjected to higher shear stresses then the fascicular matrix, and as a sparse, softer 

component of tendon, may be more prone to damage and injury. This could partially explain the 

higher turnover rates in this phase as compared to fascicular matrix (observed high levels of MMP-

1 and C1,2C in control samples). IFM may need to turnover more rapidly and respond more 

robustly to damage to ensure proper IFM and tendon function. Further characterisation of the 

mechanobiology of the IFM is needed to fully understand its role. 
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