79 research outputs found

    The human renal lymphatics under normal and pathological conditions

    Get PDF
    Ishikawa Y, Akasaka Y, Kiguchi H, Akishima-Fukasawa Y, Hasegawa T, Ito K, Kimura-Matsumoto M, Ishiguro S, Morita H, Sato S, Soh S & Ishii T (2006) Histopathology 49, 265–273 The human renal lymphatics under normal and pathological conditions AIMS: The renal lymphatics have not been fully documented in humans. The aim of this study was to clarify the morphology of the human renal lymphatic system under normal and pathological conditions by immunohistochemistry using anti-D2-40 antibody. METHODS AND RESULTS: Normal and pathological renal tissues obtained at autopsy as well as nephrectomy specimens with renal cell carcinoma (RCC) were used. Thin sections were immunostained with antibodies against D2-40 and CD31. In normal kidney, D2-40+ lymphatics were abundant in the interstitium around the interlobar and arcuate arteries/veins but sporadic in those around the glomeruli or between the tubules in the cortex. A few lymphatics contained erythrocytes in their lumina. Lymphatics were seldom present in the medulla. In RCC cases, lymphatics were evident at the tumour margin, whereas CD31+ capillaries were abundant throughout the tumour and lymphatics were increased in the fibrous interstitium around the tumour. Lymphatic invasion by RCC cells was also detectable. D2-40+ lymphatics were evident in other pathological conditions and end-stage kidney had a denser lymphatic distribution than normal kidney. CONCLUSIONS: Lymphatics are abundant around the arteries/veins and are also present in the renal cortex and medulla. D2-40 immunostaining is helpful for investigating the pathophysiological role of renal lymphatics

    Patients' perspectives on self-testing of oral anticoagulation therapy: Content analysis of patients' internet blogs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients on oral anticoagulant therapy (OAT) require regular testing of the prothrombin time (PT) and the international normalised ratio (INR) to monitor their blood coagulation level to avoid complications of either over or under coagulation. PT/INR can be tested by a healthcare professional or by the patient. The latter mode of the testing is known as patient self-testing or home testing. The objective of this study was to elicit patients' perspectives and experiences regarding PT/INR self-testing using portable coagulometer devices.</p> <p>Methods</p> <p>Internet blog text mining was used to collect 246 blog postings by 108 patients, mainly from the USA and the UK. The content of these qualitative data were analysed using XSight and NVivo software packages.</p> <p>Results</p> <p>The key themes in relation to self-testing of OAT identified were as follows: Patient benefits reported were time saved, personal control, choice, travel reduction, cheaper testing, and peace of mind. Equipment issues included high costs, reliability, quality, and learning how to use the device. PT/INR issues focused on the frequency of testing, INR fluctuations and individual target (therapeutic) INR level. Other themes noted were INR testing at laboratories, the interactions with healthcare professionals in managing and testing OAT and insurance companies' involvement in acquiring the self-testing equipment. Social issues included the pain and stress of taking and testing for OAT.</p> <p>Conclusions</p> <p>Patients' blogs on PT/INR testing provide insightful information that can help in understanding the nature of the experiences and perspectives of patients on self-testing of OAT. The themes identified in this paper highlight the substantial complexities involved in self-testing programmes in the healthcare system. Thus, the issues elicited in this study are very valuable for all stakeholders involved in developing effective self-testing strategies in healthcare that are gaining considerable current momentum particularly for patients with chronic illness.</p

    In-Vivo Expression Profiling of Pseudomonas aeruginosa Infections Reveals Niche-Specific and Strain-Independent Transcriptional Programs

    Get PDF
    Pseudomonas aeruginosa is a threatening, opportunistic pathogen causing disease in immunocompromised individuals. The hallmark of P. aeruginosa virulence is its multi-factorial and combinatorial nature. It renders such bacteria infectious for many organisms and it is often resistant to antibiotics. To gain insights into the physiology of P. aeruginosa during infection, we assessed the transcriptional programs of three different P. aeruginosa strains directly after isolation from burn wounds of humans. We compared the programs to those of the same strains using two infection models: a plant model, which consisted of the infection of the midrib of lettuce leaves, and a murine tumor model, which was obtained by infection of mice with an induced tumor in the abdomen. All control conditions of P. aeruginosa cells growing in suspension and as a biofilm were added to the analysis. We found that these different P. aeruginosa strains express a pool of distinct genetic traits that are activated under particular infection conditions regardless of their genetic variability. The knowledge herein generated will advance our understanding of P. aeruginosa virulence and provide valuable cues for the definition of prospective targets to develop novel intervention strategies

    Multi-Modal Proteomic Analysis of Retinal Protein Expression Alterations in a Rat Model of Diabetic Retinopathy

    Get PDF
    As a leading cause of adult blindness, diabetic retinopathy is a prevalent and profound complication of diabetes. We have previously reported duration-dependent changes in retinal vascular permeability, apoptosis, and mRNA expression with diabetes in a rat model system. The aim of this study was to identify retinal proteomic alterations associated with functional dysregulation of the diabetic retina to better understand diabetic retinopathy pathogenesis and that could be used as surrogate endpoints in preclinical drug testing studies.A multi-modal proteomic approach of antibody (Luminex)-, electrophoresis (DIGE)-, and LC-MS (iTRAQ)-based quantitation methods was used to maximize coverage of the retinal proteome. Transcriptomic profiling through microarray analysis was included to identify additional targets and assess potential regulation of protein expression changes at the mRNA level. The proteomic approaches proved complementary, with limited overlap in proteomic coverage. Alterations in pro-inflammatory, signaling and crystallin family proteins were confirmed by orthogonal methods in multiple independent animal cohorts. In an independent experiment, insulin replacement therapy normalized the expression of some proteins (Dbi, Anxa5) while other proteins (Cp, Cryba3, Lgals3, Stat3) were only partially normalized and Fgf2 and Crybb2 expression remained elevated.These results expand the understanding of the changes in retinal protein expression occurring with diabetes and their responsiveness to normalization of blood glucose through insulin therapy. These proteins, especially those not normalized by insulin therapy, may also be useful in preclinical drug development studies

    Peralkaline Felsic Magmatism of the Atlantic Islands

    Get PDF
    The oceanic-island magmatic systems of the Atlantic Ocean exhibit significant diversity in their respective sizes, ages, and the compositional ranges of their eruptive products. Nevertheless, almost all of the Atlantic islands and island groups have produced peralkaline felsic magmas, implying that similar petrogenetic regimes may be operating throughout the Atlantic Ocean, and arguably elsewhere. The origins of peralkaline magmas are frequently linked to low-degree partial melting of enriched mantle, followed by protracted differentiation in the shallow crust. However, additional petrogenetic processes such as magma mixing, crustal melting, and contamination have been identified at numerous peralkaline centers. The onset of peralkalinity leads to magma viscosities lower than those typical for metaluminous felsic magmas, which has profound implications for processes such as crystal settling. This study represents a compilation of published and original data which demonstrates trends that suggest that the peralkaline magmas of the Atlantic Ocean islands are generated primarily via extended (up to ∼ 95%), open system fractional crystallization of mantle-derived mafic magmas. Crustal assimilation is likely to become more significant as the system matures and fusible material accumulates in the crust. Magma mixing may occur between various compositional end-members and may be recognized via hybridized intermediate magmas. The peralkaline magmas are hydrous, and frequently zoned in composition, temperature, and/or water content. They are typically stored in shallow crustal magma reservoirs (∼ 2–5 km), maintained by mafic replenishment. Low melt viscosities (1 × 101.77 to 1 × 104.77 Pa s) facilitate two-phase flow, promoting the formation of alkali-feldspar crystal mush. This mush may then contribute melt to an overlying melt lens via filter pressing or partial melting. We utilize a three-stage model to account for the establishment, development, and termination of peralkaline magmatism in the ocean island magmatic systems of the Atlantic. We suggest that the overall control on peralkaline magmatism in the Atlantic is magma flux rate, which controls the stability of upper crustal magma reservoirs. The abundance of peralkaline magmas in the Atlantic suggests that their development must be a common, but not inevitable, stage in the evolution of ocean islands
    corecore